Performance Evaluation of Full Diversity QOSTBC MIMO Systems with Multiple Receive Antenna

Author(s):  
Hardip K. Shah ◽  
Tejal N. Parmar ◽  
Nikhil Kothari ◽  
K. S. Dasgupt

Multipath fading is inherent in wireless communication systems. Diversity is the technique which takes advantage of multipath to mitigate the effect of fading and increase signal strength. Space Time Block codes (STBC) are used in MIMO systems to improve the performance by maximizing transmit and/or receive diversity. Among different schemes based on STBC, Quasi Orthogonal Space Time Block Code (QOSTBC) is able to achieve full rate transmission for more than two transmit antennas. Constellation Rotation QOSTBC (CR-QOSTBC) achieves full diversity and improves performance further along with full rate, to overcome the limitation of QOSTBC, which is unable to maintain orthogonality amongst the codes transmitted by different antennas. Higher diversity can be achieved by increasing uncorrelated paths between transmitter and receivers using higher number of receive antennas. This paper examines improvement in BER with reference to a number of receive antennas. Simulations were carried out under ideal as well as realistic environments, using least square technique with four antennas at transmitter side and variable receive antennas. Results of simulations presented in this paper indicate performance improvement of CR-QOSTBC over QOSTBC in flat fading channel environment. Simulation results also show performance degradation in BER when channel is estimated at the receiver.

Author(s):  
Hardip K. Shah ◽  
Tejal N. Parmar ◽  
Nikhil Kothari ◽  
K. S. Dasgupta

Multipath fading is inherent in wireless communication systems. Diversity is the technique which takes advantage of multipath to mitigate the effect of fading and increase signal strength. Space Time Block codes (STBC) are used in MIMO systems to improve the performance by maximizing transmit and/or receive diversity. Among different schemes based on STBC, Quasi Orthogonal Space Time Block Code (QOSTBC) is able to achieve full rate transmission for more than two transmit antennas. Constellation Rotation QOSTBC (CR-QOSTBC) achieves full diversity and improves performance further along with full rate, to overcome the limitation of QOSTBC, which is unable to maintain orthogonality amongst the codes transmitted by different antennas. Higher diversity can be achieved by increasing uncorrelated paths between transmitter and receivers using higher number of receive antennas. This paper examines improvement in BER with reference to a number of receive antennas. Simulations were carried out under ideal as well as realistic environments, using least square technique with four antennas at transmitter side and variable receive antennas. Results of simulations presented in this paper indicate performance improvement of CR-QOSTBC over QOSTBC in flat fading channel environment. Simulation results also show performance degradation in BER when channel is estimated at the receiver.


Author(s):  
XIANGBIN YU ◽  
GUANGGUO BI

Space-time block (STB) coding has been an effective transmit diversity technique for combating fading recently. In this paper, a full-rate and low-complexity STB coding scheme with complex orthogonal design for multiple antennas is proposed, and turbo code is employed as channel coding to improve the proposed code scheme performance further. Compared with full-diversity multiple antennas STB coding schemes, the proposed scheme can implement full data rate, partial diversity and a smaller complexity, and has more spatial redundancy information. Moreover, using the proposed scheme can form efficient spatial interleaving, thus performance loss due to partial diversity is effectively compensated by the concatenation of turbo coding. Simulation results show that on the condition of the same system throughput and concatenation of turbo code, the proposed scheme has lower bit error rate (BER) than those low-rate and full-diversity multiple antennas STB coding schemes.


Sign in / Sign up

Export Citation Format

Share Document