multiple antennas
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 90)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
Youwei Zeng ◽  
Jinyi Liu ◽  
Jie Xiong ◽  
Zhaopeng Liu ◽  
Dan Wu ◽  
...  

Despite extensive research effort on contactless WiFi sensing over the past few years, there are still significant barriers hindering its wide application. One key issue is the limited sensing range due to the intrinsic nature of employing the weak target-reflected signal for sensing and therefore the sensing range is much smaller than the communication range. In this work, we address this challenging issue, moving WiFi sensing one step closer to real-world adoption. The key idea is to effectively utilize the multiple antennas widely available on commodity WiFi access points to simultaneously strengthen the target-reflected signal and reduce the noise. Although traditional beamforming schemes can help increase the signal strength, they are designed for communication and can not be directly applied to benefit sensing. To effectively increase the WiFi sensing range using multiple antennas, we first propose a new metric that quantifies the signal sensing capability. We then propose novel signal processing methods, which lay the theoretical foundation to support beamforming-based long-range WiFi sensing. To validate the proposed idea, we develop two sensing applications: fine-grained human respiration monitoring and coarse-grained human walking tracking. Extensive experiments show that: (i) the human respiration sensing range is significantly increased from the state-of-the-art 6-8 m to 11 m;1 and (ii) human walking can be accurately tracked even when the target is 18 m away from the WiFi transceivers, outperforming the sensing range of the state-of-the-art by 50%.


2021 ◽  
pp. 261-272
Author(s):  
Rajesh Kapoor ◽  
Aasheesh Shukla ◽  
Vishal Goyal

2021 ◽  
Author(s):  
Chrystal Moser ◽  
James LaBelle ◽  
Iver H. Cairns

Abstract. The High-Bandwidth Auroral Rocket (HIBAR) was launched from Poker Flat, Alaska on January 28, 2003 at 07:50 UT towards an apogee of 382 km in the night-side aurora. The flight was unique in having three high-frequency (HF) receivers using multiple antennas parallel and perpendicular to the ambient magnetic field, as well as very low frequency (VLF) receivers using antennas perpendicular to the magnetic field. These receivers observed five short-lived Langmuir wave bursts lasting from 0.1–0.2 s, consisting of a thin plasma line with frequencies in the range of 2470–2610 kHz that had an associated diffuse feature occurring 5–10 kHz above the plasma line. Both of these waves occurred slightly above the local plasma frequency with amplitudes between 1–100 μV/m. The ratio of the parallel to perpendicular components of the plasma line and diffuse feature were used to determine the angle of propagation of these waves with respect to the background magnetic field. These angles were found to be comparable to the theoretical Z-infinity angle that these waves would resonate at. The VLF receiver detected auroral hiss throughout the flight at 5–10 kHz, a frequency matching the difference between the plasma line and the diffuse feature. A dispersion solver, partially informed with measured electron distributions, and associated frequency- and wavevector-matching conditions were employed to determine if the diffuse features could be generated by a nonlinear wave-wave interaction of the plasma line with the lower frequency auroral hiss waves/lower-hybrid waves. The results show that this interpretation is plausible.


2021 ◽  
Vol 10 (4) ◽  
pp. 2302-2309
Author(s):  
Chi-Bao Le ◽  
Dinh-Thuan Do

A downlink of small-cell network is studied in this paper studies in term of outage performance. We benefit by design of multiple antennas at the base station and fullduplex transmission mode. The scenario of multiple surrounded small-cell networks is considered to look the impact of interference. We derive the closed-form expression of outage probability to show performance of mobile user. We investigate target rate is main factor affecting to outage performance. According to the considered system, simulation results indicate reasonable value of outage probability and throughput as well. Finally, Monte-Carlo simulation method is deployed to determine exactness of main results found in this article. Finally, the considered system can exhibit improved performance if controlling interference term.


Author(s):  
Miguel Gutierrez Gaitan ◽  
Ramiro Samano-Robles
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document