Detection and Diagnosis of Broken Rotor Bars in Induction Motors Using the Fuzzy Min-Max Neural Network

2012 ◽  
Vol 3 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Manjeevan Seera ◽  
Chee Peng Lim ◽  
Dahaman Ishak

In this paper, a fault detection and diagnosis system for induction motors using motor current signature analysis and the Fuzzy Min-Max (FMM) neural network is described. The finite element method is first employed to generate experimental data for predicting the changes in stator current signatures of an induction motor due to broken rotor bars. Then, a series real laboratory experiments is for broken rotor bars detection and diagnosis. The induction motor with broken rotor bars is operated under different load conditions. In all the experiments, the FMM network is used to learn and distinguish between normal and faulty states of the induction motor based on the input features extracted from the power spectral density. The experimental results positively demonstrate that the FMM network is useful for fault detection and diagnosis of broken rotor bars in induction motors.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Furqan Asghar ◽  
Muhammad Talha ◽  
Sung Ho Kim

Recently, electrical drives generally associate inverter and induction machine. Therefore, inverter must be taken into consideration along with induction motor in order to provide a relevant and efficient diagnosis of these systems. Various faults in inverter may influence the system operation by unexpected maintenance, which increases the cost factor and reduces overall efficiency. In this paper, fault detection and diagnosis based on features extraction and neural network technique for three-phase inverter is presented. Basic purpose of this fault detection and diagnosis system is to detect single or multiple faults efficiently. Several features are extracted from the Clarke transformed output current and used in neural network as input for fault detection and diagnosis. Hence, some simulation study as well as hardware implementation and experimentation is carried out to verify the feasibility of the proposed scheme. Results show that the designed system not only detects faults easily, but also can effectively differentiate between multiple faults. These results prove the credibility and show the satisfactory performance of designed system. Results prove the supremacy of designed system over previous feature extraction fault systems as it can detect and diagnose faults in a single cycle as compared to previous multicycles detection with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document