motor current signature analysis
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 52)

H-INDEX

14
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7833
Author(s):  
Tiago Drummond Lopes ◽  
Adroaldo Raizer ◽  
Wilson Valente Júnior

Induction motors play a key role in the industrial sector. Thus, the correct diagnosis and classification of faults on these machines are important, even in the initial stages of evolution. Such analysis allows for increased productivity, avoids unexpected process interruptions, and prevents damage to machines. Usually, fault diagnosis is carried out by analyzing the characteristic effects caused by the faults. Thus, it is necessary to know and understand the behavior during the operation of the faulty machine. In general, monitoring these characteristics is complex, as it is necessary to acquire signals from the same motor with and without failures for comparison purposes. Whether in an industrial environment or in laboratories, the experimental characterization of failures can become unfeasible for several reasons. Thus, computer simulation of faulty motors digital twins can be an important alternative for failure analysis, especially in large motors. From this perspective, this paper presents and discusses several limitations found in the technical literature that can be minimized with the implementation of digital twins. In addition, a 3D finite element model of an induction motor with broken rotor bars is demonstrated, and motor current signature analysis is used to verify the fault effects. Results are analyzed in the time and frequency domain. Additionally, an artificial neural network of the multilayer perceptron type is used to classify the failure of broken bars in the 3D model rotor.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 277
Author(s):  
Xiangyang Xu ◽  
Guanrui Liu ◽  
Xihui Liang

Motor current signature analysis (MCSA) is a useful technique for planetary gear fault detection. Motor current signals have easier accessibility and are free from time-varying transfer path effects. If the fault symptoms in current signals are well understood, it will be more beneficial to develop effective current signal processing methods. Some researchers have developed mathematical models to study the characteristics of current signals. However, no one has considered the coupling of rotor eccentricity and gear failures, resulting in an inaccurate analysis of the current signals. This study considers the sun gear failure of a planetary gearbox and the eccentricity of the motor rotor. An improved induction motor model is proposed based on the magnetomotive force (MMF) to simulate the stator current. By analyzing the current, the modulation relationships of gearbox meshing frequency, fault frequency, power supply frequency, and gear rotating frequency are obtained. The proposed model is validated to some extent using experimental data.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5037
Author(s):  
Jorge Bonet-Jara ◽  
Alfredo Quijano-Lopez ◽  
Daniel Morinigo-Sotelo ◽  
Joan Pons-Llinares

Sensorless speed estimation has been extensively studied for its use in control schemes. Nevertheless, it is also a key step when applying Motor Current Signature Analysis to induction motor diagnosis: accurate speed estimation is vital to locate fault harmonics, and prevent false positives and false negatives, as shown at the beginning of the paper through a real industrial case. Unfortunately, existing sensorless speed estimation techniques either do not provide enough precision for this purpose or have limited applicability. Currently, this is preventing Industry 4.0 from having a precise and automatic system to monitor the motor condition. Despite its importance, there is no research published reviewing this topic. To fill this gap, this paper investigates, from both theoretical background and an industrial application perspective, the reasons behind these problems. Therefore, the families of sensorless speed estimation techniques, mainly conceived for sensorless control, are here reviewed and thoroughly analyzed from the perspective of their use for diagnosis. Moreover, the algorithms implemented in the two leading commercial diagnostic devices are analyzed using real examples from a database of industrial measurements belonging to 79 induction motors. The analysis and discussion through the paper are synthesized to summarize the lacks and weaknesses of the industry application of these methods, which helps to highlight the open problems, challenges and research prospects, showing the direction in which research efforts have to be made to solve this important problem.


2021 ◽  
Vol 5 (1) ◽  
pp. PRESS
Author(s):  
Ramadoni Syahputra ◽  
Hedi Purwanto ◽  
Rama Okta Wiyagi ◽  
Muhamad Yusvin Mustar ◽  
Indah Soesanti

This paper discusses the analysis of the performance of an induction motor using the motor current signature analysis (MCSA) technique. Induction motor is a type of electric machine that is widely used in industry. One of the industries that utilize induction motors is a steam power plant (SPP). The role of induction motors is very vital in SPP operations. Therefore, it is necessary to monitor the performance, stability, and efficiency to anticipate disturbances that can cause damage or decrease the life of the induction motor. MCSA is a reliable technique that can be used to analyze damage to an induction motor. In this technique, the induction motor current signal is detected using a current transducer. The signal is then passed on to the signal conditioning and then into the data acquisition device. The important signal data is analyzed in adequate computer equipment. The results of this analysis determine the condition of the induction motor, whether it is normal or damaged. In this research, a case study was carried out at the Rembang steam power plant, Central Java, Indonesia. The results of the analysis of several induction motors show that most of them are in normal conditions and are still feasible to operate.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingming Zhang ◽  
Jiangtian Yang ◽  
Zhang Zhang

The motor current signature analysis (MCSA) provides a nondestructive method for gear fault detection. The motor current in the faulty gear system not only involves the frequency information related to the fault but also the electric supply frequency and gear meshing-related frequency, which not only contaminates the fault characteristics but also increases the difficulty of fault extraction. To extract the fault characteristic frequency effectively, an innovative method based on the wavelet bispectrum (WB) is proposed. Bispectrum is an effective tool for identifying the fault-related quadratic phase coupling (QPC). However, it requires a large amount of data averaging, which is not suitable for short data analysis. In this paper, the wavelet bispectrum is introduced to motor current analysis and the problem of QPC extraction under variable speed conditions is preliminarily solved. Furthermore, a fault diagnostic approach for locomotive gears using the wavelet bispectrum and wavelet bispectral entropy is suggested. The presented method was effectively applied to the locomotive online running operations, and faults of the drive gear were successfully diagnosed.


This paper presents a novel approach on motor current signature analysis (MCSA) forbroken Rotor Bar fault and High Contact Resistance fault using stator current signals as an input from the three phases of Induction motors. Discrete Wavelet Transform is preferred over the Fast Fourier Transform (FFT). Fast Fourier Transform (FFT) converts signals from time domain to frequency domain on the other hand Discrete Wavelet Transform (DWT) gives complete three-dimensional information of the signal, frequency, amplitude, and the time where the frequency components exist. In wavelet analysis, thesignal is converted into scaled and translated version of mother wavelet, which is very irregular so cannot be predicted. Hence, mother wavelets are more appropriate for predicting the local behavior of the signal including irregularities and spikes. In this research features are extracted using DWT and then features are trained in Deep NN sequential model for the purpose of classification of the faults. In this research, MATLAB software has been used for building the motor model in Simulink environment and PyCharm software is used to implement Deep NN for getting accuracy and classification results. This research helps in early detection of the faults that assists in prevention from unscheduled downtimes in industry, economy loss and production loss as well.


Sign in / Sign up

Export Citation Format

Share Document