Influence of Hydrogen Sulfide in Fuel on Electric Power of Solid Oxide Fuel Cell

Author(s):  
Minako Nagamori ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima
Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.


2019 ◽  
Vol 321 ◽  
pp. 134713 ◽  
Author(s):  
D.-W. Choi ◽  
M. Ohashi ◽  
C.A. Lozano ◽  
J.W. Vanzee ◽  
P. Aungkavattana ◽  
...  

2008 ◽  
Vol 113 (1) ◽  
pp. 193-203 ◽  
Author(s):  
Natasha M. Galea ◽  
Eugene S. Kadantsev ◽  
Tom Ziegler

2007 ◽  
Vol 544-545 ◽  
pp. 997-1000 ◽  
Author(s):  
Minako Nagamori ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima

Terminal voltage, electric power density and overpotential were measured for the solid oxide fuel cell with gadolinium-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC), 30 vol% Ni-GDC anode and Pt cathode using a H2 fuel or biogas (CH4 47, CO2 31, H2 19 vol %) at 1073 K. Addition of 1 ppm H2S in the 3vol % H2O-containing H2 fuel gave no change in the open circuit voltage (0.79 - 0.80 V) and the maximum power density (65 - 72 mW/cm2). Furthermore, no reaction between H2S and Ni in the anode was suggested by the thermodynamic calculation. On the other hand, the terminal voltage and electric power density decreased when 1 ppm H2S gas was mixed with the biogas. After the biogas with 1 ppm H2S flowed into the anode for 8 h, the electric power density decreased from 125 to 90 mW/cm2. The reduced electric power density was also recovered by passing 3 vol % H2O-containing H2 fuel for 2 h.


2013 ◽  
Vol 761 ◽  
pp. 11-14 ◽  
Author(s):  
Naoki Furukawa ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Naoki Matsunaga

Biogas of about 60 % CH4 -40% CO2 composition is produced from waste food or drainage. Electrochemical reforming of CH4 with CO2 using a porous gadolinium-doped ceria (GDC) cell is an attractive process to produce a H2-CO fuel used in solid oxide fuel cell. The supplied CO2 is converted to CO and O2- ions by the reaction with electrons at cathode (CO2 + 2e- → CO + O2-). The produced CO and O2- ions are transported to the anode through a porous mixed conductor GDC electrolyte. In the anode CH4 reacts with O2- ions to produce CO, H2 and electrons (CH4 + O2- → CO + 2H2 + 2e-). This process suppresses the carbon deposition from CH4. The formed H2 and CO fuels were supplied to a solid oxide fuel cell with dense GDC electrolyte (Ce0.8Gd0.2O1.9). The open circuit voltage and maximum power density were measured for the reformed gas and for a pure H2 fuel. Little difference in the electric power was measured at 1073 K for both the fuels.


Sign in / Sign up

Export Citation Format

Share Document