Influence of Hydrogen Sulfide in Fuel on Electric Power of Solid Oxide Fuel Cell

2007 ◽  
Vol 544-545 ◽  
pp. 997-1000 ◽  
Author(s):  
Minako Nagamori ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima

Terminal voltage, electric power density and overpotential were measured for the solid oxide fuel cell with gadolinium-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC), 30 vol% Ni-GDC anode and Pt cathode using a H2 fuel or biogas (CH4 47, CO2 31, H2 19 vol %) at 1073 K. Addition of 1 ppm H2S in the 3vol % H2O-containing H2 fuel gave no change in the open circuit voltage (0.79 - 0.80 V) and the maximum power density (65 - 72 mW/cm2). Furthermore, no reaction between H2S and Ni in the anode was suggested by the thermodynamic calculation. On the other hand, the terminal voltage and electric power density decreased when 1 ppm H2S gas was mixed with the biogas. After the biogas with 1 ppm H2S flowed into the anode for 8 h, the electric power density decreased from 125 to 90 mW/cm2. The reduced electric power density was also recovered by passing 3 vol % H2O-containing H2 fuel for 2 h.

2013 ◽  
Vol 761 ◽  
pp. 11-14 ◽  
Author(s):  
Naoki Furukawa ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Naoki Matsunaga

Biogas of about 60 % CH4 -40% CO2 composition is produced from waste food or drainage. Electrochemical reforming of CH4 with CO2 using a porous gadolinium-doped ceria (GDC) cell is an attractive process to produce a H2-CO fuel used in solid oxide fuel cell. The supplied CO2 is converted to CO and O2- ions by the reaction with electrons at cathode (CO2 + 2e- → CO + O2-). The produced CO and O2- ions are transported to the anode through a porous mixed conductor GDC electrolyte. In the anode CH4 reacts with O2- ions to produce CO, H2 and electrons (CH4 + O2- → CO + 2H2 + 2e-). This process suppresses the carbon deposition from CH4. The formed H2 and CO fuels were supplied to a solid oxide fuel cell with dense GDC electrolyte (Ce0.8Gd0.2O1.9). The open circuit voltage and maximum power density were measured for the reformed gas and for a pure H2 fuel. Little difference in the electric power was measured at 1073 K for both the fuels.


RSC Advances ◽  
2014 ◽  
Vol 4 (38) ◽  
pp. 19925-19931 ◽  
Author(s):  
Yu-Chieh Tu ◽  
Chun-Yu Chang ◽  
Ming-Chung Wu ◽  
Jing-Jong Shyue ◽  
Wei-Fang Su

Highly crystalline perovskite BiFeO3 is obtained by a facile solution method. We have reported that the YSZ/BFO electrolyte with 17 μm/30 μm thickness, respectively, showed a maximum power density of 165 mW cm−2 and open-circuit voltage of 0.75 V at 650 °C.


2007 ◽  
Vol 544-545 ◽  
pp. 985-988 ◽  
Author(s):  
Go Hiramatsu ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Naoki Matsunaga

Gd-doped ceria electrolyte (Ce0.8Gd0.2O1.9, GDC, 700 μm thick), 30 vol% Ni-GDC cermet anode and perovskite cathode La0.6Sr0.4CoO3 (LSC) or La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) were used to evaluate the electric power of the cell using 3 vol%-H2O containing H2 fuel at 873 and 1073 K. Terminal voltage, ohmic resistance and overpotential were analyzed during the operation of the cell. The maximum power density with LSC and LSCF cathode was 53 and 113 mW/cm2 at 1073 K, respectively. The ohmic resistance and overpotential at the cathode was smaller for LSCF than for LSC.


Author(s):  
S. Hashimoto ◽  
Y. Liu ◽  
K. Asano ◽  
F. Yoshiba ◽  
M. Mori ◽  
...  

A microtubular solid oxide fuel cell (SOFC) bundle was developed based on a new design. Anode-supported microtubular SOFCs with the cell configuration, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.9Gd0.1O1.95 (CGO) cathode/CGO electrolyte/Ni-CGO anode were fabricated and bundled in a porous LSCF current-collecting cube with sides of 1 cm. The power generation of the fabricated SOFC bundle was measured under pressurized conditions. Using humidified 30% H2/N2 mixture gas and air, the cubic power density of the bundle at 500°C under atmospheric pressure (0.1 MPa) was 0.47 W cm−3 at 0.4 A cm−2. With increasing operating pressure, the performance increased, and the cubic power density reached 0.66 W cm−3 at 0.6 MPa. The power enhancement brought about by pressurization was due to increased open circuit voltage and reduced polarization resistance. After comparing the power gain of the pressurized SOFC and the power consumption gain of the air compressor used for pressurization, it was found that pressurized cell operation exhibited the highest actual power gain at around 0.3 MPa.


Author(s):  
Giulio Vialetto ◽  
Marco Noro ◽  
Masoud Rokni

In this paper, a new heat recovery for a microcogeneration system based on solid oxide fuel cell and air source heat pump (HP) is presented with the main goal of improving efficiency on energy conversion for a residential building. The novelty of the research work is that exhaust gases after the fuel cell are first used to heat water for heating/domestic water and then mixed with the external air to feed the evaporator of the HP with the aim of increasing energy efficiency of the latter. This system configuration decreases the possibility of freezing of the evaporator as well, which is one of the drawbacks for air source HP in Nordic climates. A parametric analysis of the system is developed by performing simulations varying the external air temperature, air humidity, and fuel cell nominal power. Coefficient of performance (COP) can increase more than 100% when fuel cell electric power is close to its nominal (50 kW), and/or inlet air has a high relative humidity (RH) (close to 100%). Instead, the effect of mixing the exhausted gases with air may be negative (up to −25%) when fuel cell electric power is 20 kW and inlet air has 25% RH. Thermodynamic analysis is carried out to prove energy advantage of such a solution with respect to a traditional one, resulting to be between 39% and 44% in terms of primary energy. The results show that the performance of the air source HP increases considerably during cold season for climates with high RH and for users with high electric power demand.


Author(s):  
S. Hashimoto ◽  
Y. Liu ◽  
K. Asano ◽  
M. Mori ◽  
Y. Funahashi ◽  
...  

A micro tubular solid oxide fuel cell (SOFC) bundle was developed based on new concept. The anode-supported micro tubular SOFCs with the cell configuration, La0.6Sr0.4Co0.2Fe0.8 O3−δ (LSCF) – Ce0.9Gd0.1O2−δ (CGO) cathode / CGO electrolyte / Ni – CGO anode were fabricated and were bundled by a porous LSCF current collecting cube 1 cm on a side. The power generation test of the fabricated SOFC bundle was carried out under pressurized conditions. Using wet 30%H2 / N2 mixture gas and air, the cubic power density of the bundle at 500°C was 0.47 Wcm−3 at 0.4Acm−2, atmospheric pressure (0.1MPa). With increasing operating pressure, the performance has been improved, and the cubic power density finally reached to 0.66 Wcm−3 at 0.6MPa. Pressurization effect for the power improvement was brought about by the open circuit voltage enhancement and reduction of the polarization resistance.


Sign in / Sign up

Export Citation Format

Share Document