Optical System Design with High Resolution and Large Field of View for the Remote Sensor

Author(s):  
Jun Chang ◽  
Zhi Cheng Weng ◽  
Yong Tian Wang ◽  
De Wen Cheng ◽  
Hui Lin Jiang
2015 ◽  
Vol 44 (1) ◽  
pp. 122001
Author(s):  
孟庆宇 MENG Qing-yu ◽  
董吉洪 DONG Ji-hong ◽  
曲洪丰 QU Hong-feng ◽  
王维 WANG Wei ◽  
曹智睿 CAO Zhi-rui

2014 ◽  
Vol 51 (5) ◽  
pp. 052202
Author(s):  
陈启梦 Chen Qimeng ◽  
张国玉 Zhang Guoyu ◽  
王哲 Wang Zhe ◽  
张健 Zhang Jian

2007 ◽  
Vol 364-366 ◽  
pp. 550-554
Author(s):  
Jun Chang ◽  
Zhi Cheng Weng ◽  
Yong Tian Wang ◽  
De Wen Cheng ◽  
Hui Lin Jiang

In this paper, we are presenting a design method and its results for a space optical system with high resolution and wide field of view. This optical system can be used both in infrared and visible configurations. The designing of this system is based on an on-axis three-mirror anastigmatic (TMA) system. Here the on-axis concept allows wide field of view (FOV) enabling a diversity of designs available for the Multi-Object Spectrometer instruments optimized for low scattered and low emissive light. The available FOVs are upto 1º in both spectrum ranges, whereas the available aperture range is F/15 - F/10. The final optical system is a three-mirror telescope with two on-axis and one off-axis segment and its resolution is 0.3m or even lower. The distinguished feature of this design is that it maintains diffraction-limited image at wide wavelengths. The technological developments in the field of computer generated shaping of large-sized optical surface details with diffraction-limited imagery have opened new avenues towards the designing techniques. Such techniques permit us to expand these technological opportunities to fabricate the aspherical off-axis mirrors for a complex configuration.


2018 ◽  
Vol 26 (9) ◽  
pp. 2334-2343
Author(s):  
姚 园 YAO yuan ◽  
许永森 XU Yong-sen ◽  
丁亚林 DING Ya-lin ◽  
远国勤 YUAN Guo-qin

2014 ◽  
Vol 43 (10) ◽  
pp. 1022001
Author(s):  
陈伟 CHEN Wei ◽  
郑玉权 ZHENG Yu-quan ◽  
薛庆生 XUE Qing-sheng

2019 ◽  
Vol 39 (9) ◽  
pp. 0922001
Author(s):  
任志广 Zhiguang Ren ◽  
李旭阳 Xuyang Li ◽  
倪栋伟 Dongwei Ni

Sign in / Sign up

Export Citation Format

Share Document