Security Analysis of Square Minus Scheme

2013 ◽  
Vol 321-324 ◽  
pp. 2669-2673
Author(s):  
Feng Yuan ◽  
Hai Wen Ou ◽  
Sheng Wei Xu

The multivariate public key cryptosystem is a new and fast public key cryptosystem. This paper investigates the security of Square minus scheme, and presents a method to attack the scheme. The attack utilizes the affine parts of the private keys and the weakness caused by the structures of the private keys to find a large number of linear equations. The attack can recover the private keys efficiently when the parameters are small enough.

2013 ◽  
Vol 380-384 ◽  
pp. 1899-1902
Author(s):  
Ling Ling Wang

Most existing verifiable ring signature schemes are based on traditional PKCs, which cannot resist future attacks of quantum computers. Fortunately, the MQ-problem based Multivariate Public-Key Cryptosystem (MPKC) is an important alternative to traditional PKCs for its potential to resist future attacks of quantum computers. In this paper, we proposed a construction of verifiable ring signature based on MPKC, which has the properties of consistent, unforgery, signer-anonymity and verifiability.


2014 ◽  
Vol 36 (6) ◽  
pp. 1177-1182
Author(s):  
Xu-Yun NIE ◽  
Zhao-Hu XU ◽  
Yong-Jian LIAO ◽  
Ting ZHONG

2010 ◽  
Vol 20-23 ◽  
pp. 505-511
Author(s):  
Xuan Wu Zhou

Compared with symmetric cryptosystem, asymmetric cryptosystem has much superiority in many application cases. Yet, the computation in a public key cryptosystem is much more complex than symmetric cryptosystem. In the paper, we applied HCC (Hyper-elliptic Curves Cryptosystem) as a typical fast public key cryptosystem into the designing of efficient blind signature scheme and presented an improved blind signature with fast cryptography algorithms. By utilizing probabilistic blinding algorithm, the scheme renders effective protection for the secrecy of original user, the signature generator or outer adversaries can not attack the secret message via the blinded information with effective polynomial algorithms. The scheme avoids the relevance between different signatures and interim parameters from the same original user, thus it effectively prevents signature forgery and replay attack. As security analysis for the scheme, we presented similar blind signature without relevant improving algorithms based on discrete logarithm cryptosystem. The analysis and comparison with other schemes both justify the security, reliability and high efficiency of the improved blind signature scheme regarding software and hardware application environment.


2019 ◽  
Vol 62 (8) ◽  
pp. 1132-1147 ◽  
Author(s):  
Jiahui Chen ◽  
Jie Ling ◽  
Jianting Ning ◽  
Jintai Ding

Abstract In this paper, we proposed an idea to construct a general multivariate public key cryptographic (MPKC) scheme based on a user’s identity. In our construction, each user is distributed a unique identity by the key distribution center (KDC) and we use this key to generate user’s private keys. Thereafter, we use these private keys to produce the corresponding public key. This method can make key generating process easier so that the public key will reduce from dozens of Kilobyte to several bits. We then use our general scheme to construct practical identity-based signature schemes named ID-UOV and ID-Rainbow based on two well-known and promising MPKC signature schemes, respectively. Finally, we present the security analysis and give experiments for all of our proposed schemes and the baseline schemes. Comparison shows that our schemes are both efficient and practical.


Sign in / Sign up

Export Citation Format

Share Document