general scheme
Recently Published Documents


TOTAL DOCUMENTS

786
(FIVE YEARS 242)

H-INDEX

40
(FIVE YEARS 3)

2022 ◽  
Vol 14 (4) ◽  
pp. 114-121
Author(s):  
Julia Sergeevna Shevnina ◽  
Larisa Gagarina ◽  
Andrey Chirkov ◽  
Nikolay Mironov

Within the framework of this work, the tasks of studying the subject area of exchange rate management software, comparative analysis of several software solutions were solved. To implement the server part of the PM KB, the Python programming language was chosen. The Django framework formed the basis of the server part of the PM UKB. To implement the client, tools such as the Jinja template engine for collecting HTML pages, the Bootstrap framework for working with a grid and styles were used, and the JS language was used to create interactivity. The paper also presents a general scheme of the algorithm in a graphical form. Further in the article, the program blocks of authentication, data unloading, switching on and off the exchange, collecting modified data, adding the control data block to the point exchange rate management page, updating data in the database, updating data of specific rates are considered.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Maxim Kurkov ◽  
Patrizia Vitale

Abstract We construct a family of four-dimensional noncommutative deformations of U(1) gauge theory following a general scheme, recently proposed in JHEP 08 (2020) 041 for a class of coordinate-dependent noncommutative algebras. This class includes the $$ \mathfrak{su} $$ su (2), the $$ \mathfrak{su} $$ su (1, 1) and the angular (or λ-Minkowski) noncommutative structures. We find that the presence of a fourth, commutative coordinate x0 leads to substantial novelties in the expression for the deformed field strength with respect to the corresponding three-dimensional case. The constructed field theoretical models are Poisson gauge theories, which correspond to the semi-classical limit of fully noncommutative gauge theories. Our expressions for the deformed gauge transformations, the deformed field strength and the deformed classical action exhibit flat commutative limits and they are exact in the sense that all orders in the deformation parameter are present. We review the connection of the formalism with the L∞ bootstrap and with symplectic embeddings, and derive the L∞-algebra, which underlies our model.


2022 ◽  
Vol 7 (2) ◽  
pp. 2878-2890
Author(s):  
Amjad Ali ◽  
◽  
Iyad Suwan ◽  
Thabet Abdeljawad ◽  
Abdullah ◽  
...  

<abstract><p>In the present work, the authors developed the scheme for time Fractional Partial Diffusion Differential Equation (FPDDE). The considered class of FPDDE describes the flow of fluid from the higher density region to the region of lower density, macroscopically it is associated with the gradient of concentration. FPDDE is used in different branches of science for the modeling and better description of those processes that involve flow of substances. The authors introduced the novel concept of fractional derivatives in term of both time and space independent variables in the proposed FPDDE. We provided the approximate solution for the underlying generalized non-linear time PFDDE in the sense of Caputo differential operator via Laplace transform combined with Adomian decomposition method known as Laplace Adomian Decomposition Method (LADM). Furthermore, we established the general scheme for the considered model in the form of infinite series by aforementioned techniques. The consequent results obtained by the proposed technique ensure that LADM is an effective and accurate technique to handle nonlinear partial differential equations as compared to the other available numerical techniques. At the end of this paper, the obtained numerical solution is visualized graphically by Matlab to describe the dynamics of desired solution.</p></abstract>


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 40
Author(s):  
Alexey V. Toporensky ◽  
Oleg B. Zaslavskii

We consider a space-time of a spherically symmetric black hole with one simple horizon. As a standard coordinate frame fails in its vicinity, this requires continuation across the horizon and constructing frames which are regular there. Up to now, several standard frames of such a kind are known. It was shown in the literature before, how some of them can be united in one picture as different limits of a general scheme. However, some types of frames (the Kruskal–Szekeres and Lemaître ones) and transformations to them from the original one remained completely disjoint. We show that the Kruskal–Szekeres and Lemaître frames stem from the same root. Overall, our approach in some sense completes the procedure and gives the most general scheme. We relate the parameter of transformation e0 to the specific energy of fiducial observers and show that in the limit e0→0, a homogeneous metric under the horizon can be obtained by a smooth limiting transition.


2021 ◽  
Vol 4 (30) ◽  
pp. 114-121
Author(s):  
N. N. Maiorov ◽  
◽  
A. A. Dobrovolskaya ◽  
V. E. Taratun ◽  
◽  
...  

The article solves the problem of finding a solution for building a digital model of the transport network or transport infrastructure object. On the basis of the analysis, the limitation of available solutions is given and the limited state of implementation of digital models in new modernizations of transport systems is fixed. The paper provides a general scheme of using documentation of the state of the transport system, nodes and elements and considers examples based on real transport systems. The paper examines the basic requirements for digital transport models and proposes a solution based on the use of unmanned aircraft systems. A model of formation of flight task variants is proposed and, as a proof of relevance of the research, the results of a real experiment are given. The task of modernizing a segment of the transport network of the city, the identification of the state of the site on the basis of data from unmanned aircraft system is considered. The article presents a solution to the problem, which has a high quality of building a digital model and the possibility of integration into other information systems for monitoring the condition and forecasting of development.


2021 ◽  
Vol 26 (4) ◽  
pp. 82
Author(s):  
Farrukh Jamal ◽  
Ali H. Abuzaid ◽  
Muhammad H. Tahir ◽  
Muhammad Arslan Nasir ◽  
Sadaf Khan ◽  
...  

In this article, Burr III distribution is proposed with a significantly improved functional form. This new modification has enhanced the flexibility of the classical distribution with the ability to model all shapes of hazard rate function including increasing, decreasing, bathtub, upside-down bathtub, and nearly constant. Some of its elementary properties, such as rth moments, sth incomplete moments, moment generating function, skewness, kurtosis, mode, ith order statistics, and stochastic ordering, are presented in a clear and concise manner. The well-established technique of maximum likelihood is employed to estimate model parameters. Middle-censoring is considered as a modern general scheme of censoring. The efficacy of the proposed model is asserted through three applications consisting of complete and censored samples.


Author(s):  
D. Derevyanko ◽  
A. Kolodiazhna ◽  
Y. Nуtsun

The work is devoted to the analysis of the peculiarities of determining the economic indicators of the feasibility of implementing measures to improve energy efficiency. In contrast to energy saving, which aims to reduce the consumption of energy resources, energy efficiency is a matter of appropriate energy consumption. That is, the use of less energy for the same level of supply of buildings or industries. The topic is relevant, because now energy prices are rising every year. At the same time, the International Energy Agency estimates an increase in total resource needs by 25% by 2040.  To achieve this goal, standard measures aimed at improving the energy efficiency of buildings, the effects of the implementation of these measures, a number of economic indicators, including PP, ARR, NPV, PI, BCR, SIR, MARR, IRR and DPP, were analyzed, evaluated and grouped. The focus was on the dynamic group of indicators due to the fact that their calculation involves the use of a discounting procedure. The general scheme of all dynamic indicators is the same and is based on forecasting costs and revenues for the planning period. The indicators of this group take into account changes in the value of money over time, which is neglected by the indicators of the static group. The most popular indicators are the calculation of net present value (NPV) and the definition of profitability index (PI). This work can be used to solve the problem of low energy efficiency and insufficient funding for the modernization of the building


Author(s):  
Emma Hart ◽  
Léni K. Le Goff

We survey and reflect on how learning (in the form of individual learning and/or culture) can augment evolutionary approaches to the joint optimization of the body and control of a robot. We focus on a class of applications where the goal is to evolve the body and brain of a single robot to optimize performance on a specified task. The review is grounded in a general framework for evolution which permits the interaction of artificial evolution acting on a population with individual and cultural learning mechanisms. We discuss examples of variations of the general scheme of ‘evolution plus learning’ from a broad range of robotic systems, and reflect on how the interaction of the two paradigms influences diversity, performance and rate of improvement. Finally, we suggest a number of avenues for future work as a result of the insights that arise from the review. This article is part of a discussion meeting issue ‘The emergence of collective knowledge and cumulative culture in animals, humans and machines’.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7617
Author(s):  
Claudio Giorgi ◽  
Angelo Morro

The paper develops a general scheme for viscoelastic materials, where the constitutive properties are described by means of measures of strain, stress, heat flux, and their time derivatives. The constitutive functions are required to be consistent with the second law of thermodynamics. Indeed, a new view is associated with the second law: the non-negative expression of the entropy production is set equal to a further constitutive function. The introduction of the entropy production as a constitutive function allows for a much wider range of models. Within this range, a scheme to obtain nonlinear models of thermo-viscoelastic materials subject to large deformations is established. Notably, the Kelvin–Voigt, Maxwell, Burgers, and Oldroyd-B viscoelastic models, along with the Maxwell–Cattaneo heat conduction, are obtained as special cases. The scheme allows also for modelling the visco-plastic materials, such as the Prandtl–Reuss work-hardening function and the Bingham–Norton fluid.


2021 ◽  
Vol 4 ◽  
pp. 64-71
Author(s):  
Volodymyr Boublik

The paper investigates a possibility of developing a non-virtual hierarchy for a special case of class signature, which may possess different interpretations. The approach is similar to double dispatching in the C ++ programming language. As an alternative to polymorphism, a non-polymorphic hierarchy has been suggested based on generic programming templates. This hierarchy is based on inverse parametrization for templates enabling constructing a general scheme for the design pattern. The pattern defined a class architecture suitable for static implementation of double dispatched multimethod for a special case of signature- defined interfaces.In fact, any abstract base class (interface) with purely virtual operations must acquire a polymorphic implementation. Besides, the polymorphism itself, the dependence of a virtual function on two objects – “this” and another parameter – requires the use of double dispatch, turning a class member function into a double dispatched multimethod.A preliminary consideration deals with issues of double dispatching in the C++ programming language. Inheritance with polymorphic class member functions is used. This requires special efforts of adding to both bases and derived classes a couple of virtual functions to support dispatching. In any case, this approach, besides using virtual functions, has a disadvantage of violating one of the SOLID principles, namely the principle of dependency inversion: base classes should not depend on derivatives, which negatively affects the quality of the software.Polymorphism is usually understood as the dynamic tuning of a program to the data type of the object that the program will encounter during its execution. That is, by its nature, polymorphism is a purely dynamic characteristic. However, in C++ literature and in practice, you can come across the term “static polymorphism”.At the same time, research of possibilities of generalized programming (templates) allows transferring some dynamic problems to the static level. In particular, a variant of static polymorphism application without virtual functions can be considered.A variant of non-virtual double scheduling has been proposed, generalized in the form of a created design pattern “Signature multimethod”. The use of the newly created pattern is illustrated with an example of implementing classes of complex numbers. The absence of violations of SOLID principles is shown, and the possibility of supplementing the hierarchy with new derived classes without the need to interfere with the structure of the base class is demonstrated.The approach suggested in this work has been used in courses in object-oriented programming at the Faculty of Informatics of Kyiv-Mohyla Academy.


Sign in / Sign up

Export Citation Format

Share Document