secret message
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 173)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Hussein Abdulameer Abdulkadhim ◽  
Jinan Nsaif Shehab

Although variety in hiding methods used to protect data and information transmitted via channels but still need more robustness and difficulty to improve protection level of the secret messages from hacking or attacking. Moreover, hiding several medias in one media to reduce the transmission time and band of channel is the important task and define as a gain channel. This calls to find other ways to be more complexity in detecting the secret message. Therefore, this paper proposes cryptography/steganography method to hide an audio/voice message (secret message) in two different cover medias: audio and video. This method is use least significant bits (LSB) algorithm combined with 4D grid multi-wing hyper-chaotic (GMWH) system. Shuffling of an audio using key generated by GMWH system and then hiding message using LSB algorithm will provide more difficulty of extracting the original audio by hackers or attackers. According to analyses of obtained results in the receiver using peak signal-to-noise ratio (PSNR)/mean square error (MSE) and sensitivity of encryption key, the proposed method has more security level and robustness. Finally, this work will provide extra security to the mixture base of crypto-steganographic methods.


Author(s):  
Huda Kadhim Tayyeh ◽  
Ahmed Sabah Ahmed AL-Jumaili

Steganography is one of the cryptography techniques where secret information can be hidden through multimedia files such as images and videos. Steganography can offer a way of exchanging secret and encrypted information in an untypical mechanism where communicating parties can only interpret the secret message. The literature has shown a great interest in the least significant bit (LSB) technique which aims at embedding the secret message bits into the most insignificant bits of the image pixels. Although LSB showed a stable performance of image steganography yet, many works should be done on the message part. This paper aims to propose a combination of LSB and Deflate compression algorithm for image steganography. The proposed Deflate algorithm utilized both LZ77 and Huffman coding. After compressing the message text, LSB has been applied to embed the text within the cover image. Using benchmark images, the proposed method demonstrated an outperformance over the state of the art. This can proof the efficacy of using Deflate as a data compression prior to the LSB embedding.


Author(s):  
Nikita Bhoskar

Abstract: The quick response code (QR) has become most popular barcode because of its larger data capacity and increased damage resistance. Barcode scanners can easily extract information hidden in the QR code when scanning data forms. However, some confidential data stored directly in QR codes are not secure in real world QR apps. To proposed approach to visual secret sharing scheme to encode a secret QR code into distinct shares. In assessment with other techniques, the shares in proposed scheme are valid QR codes that may be decoded with some unique that means of a trendy QR code reader, so that escaping increases suspicious attackers. An existing sharing technique is subjected to loss of security. On this premise, consider the strategy for (k, n) get to structures by using the (k, k) sharing occurrence on each k-member subset dependent on specific relationship. In addition, the secret message is recovered with the aid of XOR-ing the qualified shares. This operation which can effortlessly be achieved the use of smartphones or different QR scanning gadgets. Contribution work is, working on optimal partitioning methods and compare original message with shared message using hashing techniques. Keywords: Hashing, partitioning algorithm, error correction capacity, high security, Quick Response code, visual secret sharing scheme


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 111
Author(s):  
Mingliang Zhang ◽  
Zhenyu Li ◽  
Pei Zhang ◽  
Yi Zhang ◽  
Xiangyang Luo

Behavioral steganography is a method used to achieve covert communication based on the sender’s behaviors. It has attracted a great deal of attention due to its robustness and wide application scenarios. Current behavioral steganographic methods are still difficult to apply in practice because of their limited embedding capacity. To this end, this paper proposes a novel high-capacity behavioral steganographic method combining timestamp modulation and carrier selection based on social networks. It is a steganographic method where the embedding process and the extraction process are symmetric. When sending a secret message, the method first maps the secret message to a set of high-frequency keywords and divides them into keyword subsets. Then, the posts containing the keyword subsets are retrieved on social networks. Next, the positions of the keywords in the posts are modulated as the timestamps. Finally, the stego behaviors applied to the retrieved posts are generated. This method does not modify the content of the carrier, which ensures the naturalness of the posts. Compared with typical behavioral steganographic methods, the embedding capacity of the proposed method is 29.23∼51.47 times higher than that of others. Compared to generative text steganography, the embedding capacity is improved by 16.26∼23.94%.


2022 ◽  
Vol 8 ◽  
pp. e843
Author(s):  
Murat Hacimurtazaoglu ◽  
Kemal Tutuncu

Background In terms of data-hiding areas, video steganography is more advantageous compared to other steganography techniques since it uses video as its cover medium. For any video steganography, the good trade-off among robustness, imperceptibility, and payload must be created and maintained. Even though it has the advantage of capacity, video steganography has the robustness problem especially regarding spatial domain is used to implement it. Transformation operations and statistical attacks can harm secret data. Thus, the ideal video steganography technique must provide high imperceptibility, high payload, and resistance towards visual, statistical and transformation-based steganalysis attacks. Methods One of the most common spatial methods for hiding data within the cover medium is the Least Significant Bit (LSB) method. In this study, an LSB-based video steganography application that uses a poly-pattern key block matrix (KBM) as the key was proposed. The key is a 64 × 64 pixel block matrix that consists of 16 sub-pattern blocks with a pixel size of 16 × 16. To increase the security of the proposed approach, sub-patterns in the KBM are allowed to shift in four directions and rotate up to 270° depending on the user preference and logical operations. For additional security XOR and AND logical operations were used to determine whether to choose the next predetermined 64 × 64 pixel block or jump to another pixel block in the cover video frame to place a KBM to embed the secret data. The fact that the combination of variable KBM structure and logical operator for the secret data embedding distinguishes the proposed algorithm from previous video steganography studies conducted with LSB-based approaches. Results Mean Squared Error (MSE), Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) parameters were calculated for the detection of the imperceptibility (or the resistance against visual attacks ) of the proposed algorithm. The proposed algorithm obtained the best MSE, SSIM and PSNR parameter values based on the secret message length as 0.00066, 0.99999, 80.01458 dB for 42.8 Kb of secret message and 0.00173, 0.99999, 75.72723 dB for 109 Kb of secret message, respectively. These results are better than the results of classic LSB and the studies conducted with LSB-based video steganography approaches in the literature. Since the proposed system allows an equal amount of data embedding in each video frame the data loss will be less in transformation operations. The lost data can be easily obtained from the entire text with natural language processing. The variable structure of the KBM, logical operators and extra security preventions makes the proposed system be more secure and complex. This increases the unpredictability and resistance against statistical attacks. Thus, the proposed method provides high imperceptibility and resistance towards visual, statistical and transformation-based attacks while acceptable even high payload.


2022 ◽  
Author(s):  
Prabhas Kumar Singh ◽  
Biswapati Jana ◽  
Kakali Datta

Abstract In 2020, Ashraf et al. proposed an interval type-2 fuzzy logic based block similarity calculation using color proximity relations of neighboring pixels in a steganographic scheme. Their method works well for detecting similarity, but it has drawbacks in terms of visual quality, imperceptibility, security, and robustness. Using Mamdani fuzzy logic to identify color proximity at the block level, as well as a shared secret key and post-processing system, this paper attempts to develop a robust data hiding scheme with similarity measure to ensure good visual quality, robustness, imperceptibility, and enhance the security. Further, the block color proximity is graded using an interval threshold. Accordingly, data embedding is processed in the sequence generated by the shared secret keys. In order to increase the quality and accuracy of the recovered secret message, the tampering coincidence problem is solved through a post-processing approach. The experimental analysis, steganalysis and comparisons clearly illustrate the effectiveness of the proposed scheme in terms of visual quality, structural similarity, recoverability and robustness.


2022 ◽  
Author(s):  
Gopinath N ◽  
Prayla Shyry D

Abstract Network security is critical for both personal and business networks. Most homes with high – speed internet have one or more wireless routers, which can be hacked if not adequately secured. Even though, if more number of solutions were addressed for security, still the security is challenging one in networks.Quantum Key Distribution was proposed to enhance security in the past literature. In this QKD, the secret message was converted in to Q-bits. Through this side channel, there is a chance to hack the data by the Eavesdropper which cannot be identified by the receiver side. So, receiver will send the acknowledgement to the sender for sending encrypted data in the classical channel.From this, the hacker can easily fetch the encrypted data from the classical channel. To address this issue, Security in Quantum side Channel (SQSC) framework has been proposed in which Shifting and Binary Conversions (SBC) algorithm has been implemented. This proposed security model attains good performance to a greater extent.


2022 ◽  
pp. 152-164
Author(s):  
Eimad Abdu Abusham ◽  
Aiysha Ali Majid Al-Marzouqi ◽  
Mahmood Al-Bahri ◽  
Maryam G. Aljabri

The use of digital images has become very common because of the rapid increase of the internet over time. Moving digital images over the internet is easy, but keeping ownership is complex, and serious issues have emerged. Forgery, fraud, and pirating of this content are rising. Different techniques used to protect images, like watermarking and steganography, but these methods are not enough toprotect. So, providing new techniques is essential for protecting image ownership. We have proposed a fusion method of steganography and watermarking in this work. First, the secret message is encoded within the original image using the LSB technique to obtain the stego image. Secondly, the watermarking process is applied on the stego image using text watermarking or image watermarking to provide stego-watermarked-image. The proposed fusion watermarking and steganography method is very useful for protecting image ownership over insecure communication channels. An attacker cannot get the desired watermarked image from the stego-watermarked-image without knowing the secret message hiding inside it using the LSB technique. The proposed method is efficient, simple and secure; it provides significant protection for image ownership.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mingliang Zhang ◽  
Xiangyang Luo ◽  
Pei Zhang ◽  
Hao Li ◽  
Yi Zhang ◽  
...  

Social Internet of Things (SIoT) is an emerging field that combines IoT and Internet, which can provide many novel and convenient application scenarios but still faces challenges in data privacy protection. In this paper, we propose a robust behavioral steganography method with high embedding capacity across social networks based on timestamp modulation. Firstly, the IoT devices on the sending end modulate the secret message to be embedded into a timestamp by using the common property on social networks. Secondly, the accounts of multiple social networks are used as the vertices, and the timestamp mapping relationship generated by the interaction behaviors between them is used as the edges to construct a directed secret message graph across social networks. Then, the frequency of interaction behaviors generated by users of mainstream social networks is analyzed; the corresponding timestamps and social networks are used to implement interaction behaviors based on the secret message graph and the frequency of interaction behaviors. Next, we analyze the frequency of interaction behaviors generated by users in mainstream social networks, implement the interaction behaviors according to the secret message graph and the frequency of interaction behaviors in the corresponding timestamps and social networks, and combine the redundant mapping control to complete the embedding of secret message. Finally, the receiver constructs the timestamp mapping relationship through the shared account, key, and other parameters to achieve the extraction of secret message. The algorithm is robust and does not have the problem that existing multimedia-based steganography methods are difficult to extract the embedded messages completely. Compared with existing graph theory-based social network steganography methods, using timestamps and behaviors frequencies to hide message in multiple social networks increases the cost of detecting covert communication and improves concealment of steganography. At the same time, the algorithm uses a directed secret message graph to increase the number of bits carried by each behavior and improves the embedding capacity. A large number of tests have been conducted on mainstream social networks such as Facebook, Twitter, and Weibo. The results show that the proposed method successfully distributes secret message to multiple social networks and achieves complete extraction of embedded message at the receiving end. The embedding capacity is increased by 1.98–4.89 times compared with the existing methods SSN, NGTASS, and SGSIR.


Author(s):  
Mohamad Tariq Barakat ◽  
Rushdi Abu Zneit ◽  
Ziad A. Alqadi

Multiple methods are used to hide secret messages in digital color images, and the most important and most common is the least significant bit (LSB) method. The LSB method is a known and exposed method, and anyone with programming experience can retrieve the secret message embedded in the digital image. In this paper research we will add some enhancements to improve the security level of LSB method to protect the embedded secret message from being hacked. A simple method of secret message cryptography will be used to encrypt the secret message before bedding it using LSB method. The method will be based on using color image as an image_key; this image_key will be resized to generate the needed secret private key used to encrypt-decrypt secret message. The length and the contents of the generated private key will dynamically change depending on the message length and the selected image_key. The selected image_key will be kept in secret without transmission and will be known only by the sender and receiver and it can be changed any time when needed. The proposed crypto_steganographic method will be implemented to show how it will increase the level o secret message protection.


Sign in / Sign up

Export Citation Format

Share Document