Study on Force Control in Abrasive Polishing of Aspheric Parts

2010 ◽  
Vol 37-38 ◽  
pp. 1287-1291 ◽  
Author(s):  
Di Zheng ◽  
Bi Da Lv ◽  
Jian Ming Zhan ◽  
Li Yong Hu

Aspheric parts are attracting many researchers’ attention for their excellent optical properties. The commonly used manufacturing technology for aspheric parts are mainly based on dedicated high precision machines, resulting in high cost and restricted application fields. To polish this kind of parts on general CNC machine tools, however, the surface quality improvement is limited due to the problem of force-position coupling. In order to solve this issue, a force-position decoupling control method for abrasive polishing was studied, a corresponding comliant polishing tool system was developed, and the mathematical model of the tool system was established. In addition, a polishing force controller was designed, and the performance of the tool system was numerically simulated. Simulation results showed that the polishing tool system can effectively achieve the tasks of force-position decoupling and the stable control of the polishing force.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaoping Li ◽  
Yonghong Deng ◽  
Xuezhe Li

A CNC machine tool is process control equipment integrating machine, electricity, and liquid, which makes its fault diagnosis complex and special due to its own advanced, complex, and intelligent characteristics. Traditional diagnostic methods rely on the engineering experience of technical personnel, which incorporates human subjective factors, and can only perform qualitative analysis, resulting in low diagnostic efficiency. And through a single sensor to detect and diagnose the machine tool, the accuracy and credibility of the decision are low, and the system is also weak against interference. In this paper, we first summarize the composition and working principle of CNC machine tools and analyze the working condition signals generated by CNC machine tools and the sensors that collect the signals and decide to use a multisensor multisignal fusion-based approach to monitor the machine tool status. It is possible to obtain more effective and valuable information from the observed information through multiple sensors so that the goal of fusion can be achieved. In this paper, a multisensor fusion technique based on wavelet transform and neural network fusion is applied to a machine tool condition monitoring system. The theoretical basis of wavelet analysis and neural network is introduced, and the composition of the condition monitoring system and the process of applying multisensor fusion technology based on wavelet analysis and neural network in the condition monitoring system are given. A complete software and hardware system for online monitoring of CNC machine tools is established. In order to improve the accuracy of the mathematical model, the use of a neural network to fit the nonlinear data and the use of coarse set theory to simplify the relevant data can effectively solve the accurate establishment of the mathematical model in the error compensation method. The thermal error compensation method for CNC machine tools is proposed based on rough set theory, ant colony algorithm, and neural network. This paper first investigates the current development of error compensation technology for CNC machining centers, analyzes the various error sources of CNC machine tools, and finds out the influencing factors affecting the errors of CNC machine tools.


Sign in / Sign up

Export Citation Format

Share Document