contouring control
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 25)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Puren Ouyang ◽  
Yuqi Hu ◽  
Wenhui Yue ◽  
Deshun Liu

Reduction of contour error is a very important issue for high precise contour tracking applications, and many control systems were proposed to deal with contour tracking problems for two/three axial translational motion systems. However, there is no research on cross-coupled contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring control of multi-DOF serial manipulators is developed for the first time and a new cross-coupled PD (CC-PD) control law is proposed, based on contour errors of the end-effector and tracking errors of the joints. It is a combination of PD control for trajectory tracking at joint level and PD control for contour tracking at the end-effector level. The contour error of the end-effector is transformed to the equivalent tracking errors of the joints using the Jacobian regulation, and the CC-PD control law is implemented in the joint level. Stability analysis of the proposed CC-PD control system is conducted using the Lyapunov method, followed by some simulation studies for linear and nonlinear contour tracking to verify the effectiveness of the proposed CC-PD control system.


2021 ◽  
Author(s):  
Puren Ouyang ◽  
Yuqi Hu ◽  
Wenhui Yue ◽  
Deshun Liu

Reduction of contour error is a very important issue for high precise contour tracking applications, and many control systems were proposed to deal with contour tracking problems for two/three axial translational motion systems. However, there is no research on cross-coupled contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring control of multi-DOF serial manipulators is developed for the first time and a new cross-coupled PD (CC-PD) control law is proposed, based on contour errors of the end-effector and tracking errors of the joints. It is a combination of PD control for trajectory tracking at joint level and PD control for contour tracking at the end-effector level. The contour error of the end-effector is transformed to the equivalent tracking errors of the joints using the Jacobian regulation, and the CC-PD control law is implemented in the joint level. Stability analysis of the proposed CC-PD control system is conducted using the Lyapunov method, followed by some simulation studies for linear and nonlinear contour tracking to verify the effectiveness of the proposed CC-PD control system.


2020 ◽  
Vol 151 ◽  
pp. 103944
Author(s):  
Min Wan ◽  
Qun-Bao Xiao ◽  
Yang Liu ◽  
Wei-Hong Zhang

Sign in / Sign up

Export Citation Format

Share Document