Layered Region Based Flow-Sensitive Demand-Driven Alias Analysis

2014 ◽  
Vol 577 ◽  
pp. 917-920
Author(s):  
Long Pang ◽  
Xiao Hong Su ◽  
Pei Jun Ma ◽  
Ling Ling Zhao

The pointer alias is indispensable for program analysis. Comparing to point-to set, it’s more efficient to formulate the alias as the context free language (CFL) reachability problem. However, the precision is limited to flow-insensitivity. To solve this problem, we propose a flow sensitive, demand-driven analysis algorithm for answering may-alias queries. First the partial single static assignment is used to discriminate the address-taken pointers. Then the order of control flow is encoded in the level linearization code to ease comparison. Finally, the query of alias in demand driven is converted into the search of CFL reachability with feasible flows. The experiments demonstrate the effectiveness of the proposed approach.

2007 ◽  
Vol 18 (06) ◽  
pp. 1293-1302 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER

We investigate the intersection of Church-Rosser languages and (strongly) context-free languages. The intersection is still a proper superset of the deterministic context-free languages as well as of their reversals, while its membership problem is solvable in linear time. For the problem whether a given Church-Rosser or context-free language belongs to the intersection we show completeness for the second level of the arithmetic hierarchy. The equivalence of Church-Rosser and context-free languages is Π1-complete. It is proved that all considered intersections are pairwise incomparable. Finally, closure properties under several operations are investigated.


2011 ◽  
Vol 14 ◽  
pp. 34-71 ◽  
Author(s):  
Eric M. Freden ◽  
Teresa Knudson ◽  
Jennifer Schofield

AbstractThe computation of growth series for the higher Baumslag–Solitar groups is an open problem first posed by de la Harpe and Grigorchuk. We study the growth of the horocyclic subgroup as the key to the overall growth of these Baumslag–Solitar groups BS(p,q), where 1<p<q. In fact, the overall growth series can be represented as a modified convolution product with one of the factors being based on the series for the horocyclic subgroup. We exhibit two distinct algorithms that compute the growth of the horocyclic subgroup and discuss the time and space complexity of these algorithms. We show that when p divides q, the horocyclic subgroup has a geodesic combing whose words form a context-free (in fact, one-counter) language. A theorem of Chomsky–Schützenberger allows us to compute the growth series for this subgroup, which is rational. When p does not divide q, we show that no geodesic combing for the horocyclic subgroup forms a context-free language, although there is a context-sensitive geodesic combing. We exhibit a specific linearly bounded Turing machine that accepts this language (with quadratic time complexity) in the case of BS(2,3) and outline the Turing machine construction in the general case.


2013 ◽  
Vol 24 (07) ◽  
pp. 1067-1082 ◽  
Author(s):  
YO-SUB HAN ◽  
SANG-KI KO ◽  
KAI SALOMAA

The edit-distance between two strings is the smallest number of operations required to transform one string into the other. The distance between languages L1and L2is the smallest edit-distance between string wi∈ Li, i = 1, 2. We consider the problem of computing the edit-distance of a given regular language and a given context-free language. First, we present an algorithm that finds for the languages an optimal alignment, that is, a sequence of edit operations that transforms a string in one language to a string in the other. The length of the optimal alignment, in the worst case, is exponential in the size of the given grammar and finite automaton. Then, we investigate the problem of computing only the edit-distance of the languages without explicitly producing an optimal alignment. We design a polynomial time algorithm that calculates the edit-distance based on unary homomorphisms.


2019 ◽  
Vol 25 (2) ◽  
pp. 214-214
Author(s):  
Marcus Vinícius Midena Ramos

Sign in / Sign up

Export Citation Format

Share Document