regular language
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 48)

H-INDEX

17
(FIVE YEARS 1)

Automatica ◽  
2021 ◽  
Vol 134 ◽  
pp. 109903
Author(s):  
Giordano Pola ◽  
Tommaso Masciulli ◽  
Elena De Santis ◽  
Maria Domenica Di Benedetto

2021 ◽  
Vol volume 13, issue 2 ◽  
Author(s):  
Arman Darbinyan ◽  
Rostislav Grigorchuk ◽  
Asif Shaikh

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.


2021 ◽  
Vol volume 13, issue 2 ◽  
Author(s):  
Arman Darbinyan ◽  
Rostislav Grigorchuk ◽  
Asif Shaikh

For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.


Author(s):  
Collin Bleak

Results in [Formula: see text] algebras, of Matte Bon and Le Boudec, and of Haagerup and Olesen, apply to the R. Thompson groups [Formula: see text]. These results together show that [Formula: see text] is non-amenable if and only if [Formula: see text] has a simple reduced [Formula: see text]-algebra. In further investigations into the structure of [Formula: see text]-algebras, Breuillard, Kalantar, Kennedy, and Ozawa introduce the notion of a normalish subgroup of a group [Formula: see text]. They show that if a group [Formula: see text] admits no non-trivial finite normal subgroups and no normalish amenable subgroups then it has a simple reduced [Formula: see text]-algebra. Our chief result concerns the R. Thompson groups [Formula: see text]; we show that there is an elementary amenable group [Formula: see text] [where here, [Formula: see text]] with [Formula: see text] normalish in [Formula: see text]. The proof given uses a natural partial action of the group [Formula: see text] on a regular language determined by a synchronising automaton in order to verify a certain stability condition: once again highlighting the existence of interesting intersections of the theory of [Formula: see text] with various forms of formal language theory.


2021 ◽  
Vol Volume 17, Issue 3 ◽  
Author(s):  
Alexander Rabinovich ◽  
Doron Tiferet

An automaton is unambiguous if for every input it has at most one accepting computation. An automaton is k-ambiguous (for k > 0) if for every input it has at most k accepting computations. An automaton is boundedly ambiguous if it is k-ambiguous for some $k \in \mathbb{N}$. An automaton is finitely (respectively, countably) ambiguous if for every input it has at most finitely (respectively, countably) many accepting computations. The degree of ambiguity of a regular language is defined in a natural way. A language is k-ambiguous (respectively, boundedly, finitely, countably ambiguous) if it is accepted by a k-ambiguous (respectively, boundedly, finitely, countably ambiguous) automaton. Over finite words every regular language is accepted by a deterministic automaton. Over finite trees every regular language is accepted by an unambiguous automaton. Over $\omega$-words every regular language is accepted by an unambiguous B\"uchi automaton and by a deterministic parity automaton. Over infinite trees Carayol et al. showed that there are ambiguous languages. We show that over infinite trees there is a hierarchy of degrees of ambiguity: For every k > 1 there are k-ambiguous languages that are not k - 1 ambiguous; and there are finitely (respectively countably, uncountably) ambiguous languages that are not boundedly (respectively finitely, countably) ambiguous.


Author(s):  
Giuseppe De Giacomo ◽  
Paolo Felli ◽  
Marco Montali ◽  
Giuseppe Perelli

Temporal logics over finite traces, such as LTLf and its extension LDLf, have been adopted in several areas, including Business Process Management (BPM), to check properties of processes whose executions have an unbounded, but finite, length. These logics express properties of single traces in isolation, however, especially in BPM it is also of interest to express properties over the entire log, i.e., properties that relate multiple traces of the log at once. In the case of infinite-traces, HyperLTL has been proposed to express these ``hyper'' properties. In this paper, motivated by BPM, we introduce HyperLDLf, a logic that extends LDLf with the hyper features of HyperLTL. We provide a sound, complete and computationally optimal technique, based on DFAs manipulation, for the model checking problem in the relevant case where the set of traces (i.e., the log) is a regular language. We illustrate how this form of model checking can be used for verifying log of business processes and for advanced forms of process mining.


2021 ◽  
Vol 58 (4) ◽  
pp. 281-299
Author(s):  
Jürgen Dassow

AbstractFor a regular language L, let $${{\,\mathrm{Var}\,}}(L)$$ Var ( L ) be the minimal number of nonterminals necessary to generate L by right linear grammars. Moreover, for natural numbers $$k_1,k_2,\ldots ,k_n$$ k 1 , k 2 , … , k n and an n-ary regularity preserving operation f, let $$g_f^{{{\,\mathrm{Var}\,}}}(k_1,k_2,\ldots ,k_n)$$ g f Var ( k 1 , k 2 , … , k n ) be the set of all numbers k such that there are regular languages $$L_1,L_2,\ldots , L_n$$ L 1 , L 2 , … , L n such that $${{\,\mathrm{Var}\,}}(L_i)=k_i$$ Var ( L i ) = k i for $$1\le i\le n$$ 1 ≤ i ≤ n and $${{\,\mathrm{Var}\,}}(f(L_1,L_2,\ldots , L_n))=k$$ Var ( f ( L 1 , L 2 , … , L n ) ) = k . We completely determine the sets $$g_f^{{{\,\mathrm{Var}\,}}}$$ g f Var for the operations reversal, Kleene-closures $$+$$ + and $$*$$ ∗ , and union; and we give partial results for product and intersection.


Author(s):  
Lukas Fleischer ◽  
Jeffrey Shallit

For a formal language [Formula: see text], the problem of language enumeration asks to compute the length-lexicographically smallest word in [Formula: see text] larger than a given input [Formula: see text] (henceforth called the [Formula: see text]-successor of [Formula: see text]). We investigate this problem for regular languages from a computational complexity and state complexity perspective. We first show that if [Formula: see text] is recognized by a DFA with [Formula: see text] states, then [Formula: see text] states are (in general) necessary and sufficient for an unambiguous finite-state transducer to compute [Formula: see text]-successors. As a byproduct, we obtain that if [Formula: see text] is recognized by a DFA with [Formula: see text] states, then [Formula: see text] states are sufficient for a DFA to recognize the subset [Formula: see text] of [Formula: see text] composed of its lexicographically smallest words. We give a matching lower bound that holds even if [Formula: see text] is represented as an NFA. It has been known that [Formula: see text]-successors can be computed in polynomial time, even if the regular language is given as part of the input (assuming a suitable representation of the language, such as a DFA). In this paper, we refine this result in multiple directions. We show that if the regular language is given as part of the input and encoded as a DFA, the problem is in [Formula: see text]. If the regular language [Formula: see text] is fixed, we prove that the enumeration problem of the language is reducible to deciding membership to the Myhill-Nerode equivalence classes of [Formula: see text] under [Formula: see text]-uniform [Formula: see text] reductions. In particular, this implies that fixed star-free languages can be enumerated in [Formula: see text], arbitrary fixed regular languages can be enumerated in [Formula: see text] and that there exist regular languages for which the problem is [Formula: see text]-complete.


Author(s):  
Lila Kari ◽  
Timothy Ng

Splicing systems are generative mechanisms introduced by Tom Head in 1987 to model the biological process of DNA recombination. The computational engine of a splicing system is the “splicing operation”, a cut-and-paste binary string operation defined by a set of “splicing rules”, quadruples [Formula: see text] where [Formula: see text] are words over an alphabet [Formula: see text]. For two strings [Formula: see text] and [Formula: see text], applying the splicing rule [Formula: see text] produces the string [Formula: see text]. In this paper we focus on a particular type of splicing systems, called [Formula: see text] semi-simple splicing systems, [Formula: see text] and [Formula: see text], wherein all splicing rules [Formula: see text] have the property that the two strings in positions [Formula: see text] and [Formula: see text] in [Formula: see text] are singleton letters, while the other two strings are empty. The language generated by such a system consists of the set of words that are obtained starting from an initial set called “axiom set”, by iteratively applying the splicing rules to strings in the axiom set as well as to intermediately produced strings. We consider semi-simple splicing systems where the axiom set is a regular language, and investigate the descriptional complexity of such systems in terms of the size of the minimal deterministic finite automata that recognize the languages they generate.


Sign in / Sign up

Export Citation Format

Share Document