A Color Image Encryption Algorithm Based on Improved DES

2015 ◽  
Vol 743 ◽  
pp. 379-384 ◽  
Author(s):  
Zhang Li Lan ◽  
Lin Zhu ◽  
Yi Cai Li ◽  
Jun Liu

Key space will be reduced after using the traditional DES algorithm to directly encrypt color images. Through combining the chaotic capability of the logistic function and by means of a specific algorithm, the fake chaotic son key’s space which is produced by the logistic chaotic pseudo-random function could be acquired. Then use the key generation algorithm to replace the traditional DES key generation algorithm. Experiment illustrates that the proposed algorithm has stronger robustness and anti-jamming capability to noise, and larger key’s space, sensitive initial keys, and better encryption effect, meanwhile it is better immune to multiple attacks.

Author(s):  
Said Hraoui ◽  
Abdellatif JarJar

This document introduces a new cryptosystem mixing two improvement standards generally used for text encryption, in order to give birth a new color image encryption algorithm capable of dealing with known attacks. Firstly, two substitution matrixes attached to a strong replacement function will be generated for advanced Vigenere technique application. At the end of this first round, the output vector is subdivided into size blocks according to the used chaotic map, for acting a single enhanced Hill circuit insured by a large inversible matrix. A detailed description of such a large involutive matrix constructed using Kronecker products will be given. accompanied by a dynamic translation vector to eliminate any linearity. A solid chaining is established between the encrypted block and the next clear block to avoid any differential attack. Simulations carried out on a large volume of images of different sizes and formats ensure that our approach is not exposed to any known attacks.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950115 ◽  
Author(s):  
Guangfeng Cheng ◽  
Chunhua Wang ◽  
Hua Chen

In recent years, scholars studied and proposed some secure color image encryption algorithms. However, the majority of the published algorithms encrypted red, green and blue (called [Formula: see text], [Formula: see text], [Formula: see text] for short) components independently. In the paper, we propose a color image encryption scheme based on hyperchaotic system and permutation-diffusion architecture. The encryption algorithm utilizes a block permutation which is realized by mixing [Formula: see text], [Formula: see text], [Formula: see text] components to strengthen the dependence of each component. Besides, it can reduce time consumption. Then, the key streams generated by the hyperchaotic system are exploited to diffuse the pixels, the three components affect each other again. And in the diffusion process, we can get two totally different encrypted images even though we change the last pixel because the [Formula: see text] component is diffused in reverse order. The experimental results reveal that our algorithm possesses better abilities of resisting statistical attacks and differential attacks, larger key space, closer information entropy to 8, and faster encryption speed compared with other chaos-based color image encryption algorithms.


Sign in / Sign up

Export Citation Format

Share Document