Research on Thermal Error Modeling of CNC Machine Tool

2010 ◽  
Vol 135 ◽  
pp. 170-173 ◽  
Author(s):  
Qian Jian Guo ◽  
Jian Guo Yang

Four key temperature points of a CNC machine tool were obtained in this paper, and a thermal error model based on the four key temperature points was proposed by using based back propagation neural network. A thermal error compensation system was developed based on the proposed model, and which has been applied to the CNC machine tool in daily production. The results show that the thermal error in workpiece diameter has been reduced from 33 to 6 .

2013 ◽  
Vol 303-306 ◽  
pp. 1782-1785
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo

The purpose of this research is to improve the machining accuracy of a CNC machine tool through thermal error modeling and compensation. In this paper, a thermal error model based on back propagation networks (BPN) is presented, and the compensation is fulfilled. The results show that the BPN model improves the prediction accuracy of thermal errors on the CNC machine tool, and the thermal drift has been reduced from 15 to 5 after compensation.


2012 ◽  
Vol 426 ◽  
pp. 293-296
Author(s):  
Qian Jian Guo ◽  
Jian Guo Yang

Thermal error modeling. Neural network. Gear hobbing machine. Error compensation. Abstract. Four key thermal sources of YK3610 hobbing machine were selected in this paper, and a thermal error model based on the four temperature variables was proposed by using back propagation neural network. A thermal error compensation system was developed based on the proposed model, and which has been applied to the YK3610 hobbing machine in daily production. The result shows that the prediction accuracy of thermal deformation in the YK3610 hobbing machine has been improved.


2008 ◽  
Vol 392-394 ◽  
pp. 30-34 ◽  
Author(s):  
J.H. Shen ◽  
Jian Guo Yang

This paper presents a partial least squares neural network modeling method for CNC machine tool thermal errors. This method uses the neural network learning rule to obtain the PLS parameters instead of the traditional linear method in partial least squares regression so as to overcome the multicollinearity and nonlinearity problem in thermal error modeling. The basic principle and architecture of PLSNN is described and the new method is applied on the thermal error modeling for a CNC turning center. After model validation with two groups of new testing data and performance comparison with other five different modeling methods, PLSNN performs better than the others with better robustness.


Sign in / Sign up

Export Citation Format

Share Document