Thermal Error Modeling of a CNC Machine Tool

2013 ◽  
Vol 303-306 ◽  
pp. 1782-1785
Author(s):  
Chong Zhi Mao ◽  
Qian Jian Guo

The purpose of this research is to improve the machining accuracy of a CNC machine tool through thermal error modeling and compensation. In this paper, a thermal error model based on back propagation networks (BPN) is presented, and the compensation is fulfilled. The results show that the BPN model improves the prediction accuracy of thermal errors on the CNC machine tool, and the thermal drift has been reduced from 15 to 5 after compensation.

2010 ◽  
Vol 135 ◽  
pp. 170-173 ◽  
Author(s):  
Qian Jian Guo ◽  
Jian Guo Yang

Four key temperature points of a CNC machine tool were obtained in this paper, and a thermal error model based on the four key temperature points was proposed by using based back propagation neural network. A thermal error compensation system was developed based on the proposed model, and which has been applied to the CNC machine tool in daily production. The results show that the thermal error in workpiece diameter has been reduced from 33 to 6 .


2008 ◽  
Vol 392-394 ◽  
pp. 30-34 ◽  
Author(s):  
J.H. Shen ◽  
Jian Guo Yang

This paper presents a partial least squares neural network modeling method for CNC machine tool thermal errors. This method uses the neural network learning rule to obtain the PLS parameters instead of the traditional linear method in partial least squares regression so as to overcome the multicollinearity and nonlinearity problem in thermal error modeling. The basic principle and architecture of PLSNN is described and the new method is applied on the thermal error modeling for a CNC turning center. After model validation with two groups of new testing data and performance comparison with other five different modeling methods, PLSNN performs better than the others with better robustness.


2009 ◽  
Vol 416 ◽  
pp. 401-405
Author(s):  
Qian Jian Guo ◽  
Xiao Ni Qi

This paper proposes a new thermal error modeling methodology called Clustering Regression Thermal Error Modeling which not only improves the accuracy and robustness but also saves the time and cost of gear hobbing machine thermal error model. The major heat sources causing poor machining accuracy of gear hobbing machine are investigated. Clustering analysis method is applied to reduce the number of temperature sensors. Least squares regression modeling approach is used to build thermal error model for thermal error on-line prediction of gear hobbing machine. Model performance evaluation through thermal error compensation experiments shows that the new methodology has the advantage of higher accuracy and robustness.


2011 ◽  
Vol 215 ◽  
pp. 53-55
Author(s):  
Qian Jian Guo ◽  
Lei He ◽  
Guang Ming Zhu

The purpose of this research is to fulfill thermal error modeling and compensation of an INDEX-G200 turning center. This paper presents the whole process of thermal error modeling and compensation by using back propagation neural networks. Results show that the BP model improves the prediction accuracy of thermal errors on the turning center and the thermal drift has been reduced from 39 to 11 after compensation.


Sign in / Sign up

Export Citation Format

Share Document