Interface Stress Analysis of the Bending Cylinder Containing Inclusion

2011 ◽  
Vol 201-203 ◽  
pp. 951-955
Author(s):  
Xin Yan Tang

Using the elasticity and the singular integral equation method, an analysis of a bending cylinder containing inclusions is carried out. The disturbing interface stresses on the inclusion sides and the stress intensity factors at the inclusion tips are obtained. The results given in this paper are useful for the strength design of the engineering structures or mechanical components containing inclusions.

1984 ◽  
Vol 51 (1) ◽  
pp. 71-76 ◽  
Author(s):  
A.-Y. Kuo

Transient response of an interfacial crack between two dissimilar elastic, orthotropic solids is investigated. The interfacial crack is excited by tractions suddenly applied on the crack surfaces. Governing equations, boundary conditions, and continuity conditions along the interface are reduced to a singular integral equation. Solution of the singular integral equation is obtained by the use of Jacobi polynomials. Expressions for stress intensity factors at the crack tip are given. As a sample problem, an interfacial crack in a 0 deg/90 deg fiber-reinforced composite solid excited by a suddenly applied uniform pressure on the crack surfaces is studied.


2005 ◽  
Vol 73 (4) ◽  
pp. 544-554 ◽  
Author(s):  
Xian-Fang Li ◽  
L. Roy Xu

The transient response of a finite bimaterial plate with a crack perpendicular to and terminating at the interface is analyzed for two types of boundaries (free-free and clamped-clamped). The crack surface is loaded by arbitrary time-dependent antiplane shear impact. The mixed initial-boundary value problem is reduced to a singular integral equation of a generalized Cauchy kernel for the crack tearing displacement density or screw dislocation density. The Gauss-Jacobi quadrature technique is employed to numerically solve the singular integral equation, and then the dynamic stress intensity factors are determined by implementing a numerical inversion of the Laplace transform. As an example, numerical calculations are carried out for a cracked bimaterial plate composed of aluminum (material I) and epoxy or steel (material II). The effects of material properties, geometry, and boundary types on the variations of dynamic stress intensity factors are discussed in detail. Results indicate that an overshoot of the normalized stress intensity factor of the crack tip at the interface decreases for a cracked bimaterial plate, and the occurrence of which is delayed for a cracked aluminum/epoxy plate compared to a pure aluminum plate with the same crack.


Sign in / Sign up

Export Citation Format

Share Document