body force method
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 9 (9) ◽  
pp. 1017
Author(s):  
Haodong Shang ◽  
Chengsheng Zhan ◽  
Zuyuan Liu

The typical maneuvering of a ship can reflect its maneuvering characteristics, which are closely related to the safety and economy of its navigation. The accurate prediction of a ship’s maneuvering characteristics is essential for its preliminary design. This paper adopts the overset grid method to deal with multibody motion and the body-force method to describe the thrust distribution of the propeller at the model scale, as well as to obtain the changes in the hydrodynamic load and the characteristic parameters in a computational fluid dynamics (CFD) maneuver simulation. Then, the paper compares the results with those of a self-propulsion experiment conducted at the China Ship Scientific Research Center. The numerical results show that the maneuverability characteristics obtained from the CFD simulation are in satisfactory agreement with the experimental values, which demonstrates the applicability and reliability of the combination of the overset grid with the body-force method in the numerical prediction of the typical maneuvering of a ship. This provides an effective pre-evaluation method for the prediction of a ship’s maneuvering through self-propulsion.


2021 ◽  
Vol 33 (6) ◽  
pp. 063320
Author(s):  
Lingxin Zhang ◽  
Zecai Zhou ◽  
Jian Deng ◽  
Xueming Shao

Author(s):  
Kazuhiro Oda ◽  
Nao-Aki Noda

In this study, the stress intensity factor (SIF) of an interface kinked crack is analyzed by the singular integral equation of the body force method. The problem can be expressed by distributing the body force doublets of the tension and shear types along all the boundaries of the kinked and interface crack parts. The SIFs can be obtained directly from the densities of the body force doublets at the crack tips. Although the problem has already been calculated using the crack connection model, the accuracy of the analysis has not been clarified. From the analysis results in this study, it can be seen that the SIFs calculated by the crack connection model have a nonnegligible error, and the present method gives more accurate results. The advantage of the present method is that the SIFs of the kinked and the interface crack tips can be obtained at the same time with high accuracy.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hong Xie ◽  
Baoji Zhang

Based on the incompressible RANS equation, the KVLCC1 ship's resistance field's numerical simulation is carried out. In this paper, the bare hull (calm water resistance and wave resistance) and hull-propeller-rudder models are studied and compared with the values of the Hydrostatic resistance test. In the hull-propeller-rudder system's performance analysis, the body force method is used to replace the real propeller model. The new calculation domain is set for the hull-propeller-rudder system model and meshed again to obtain the highly reliable numerical simulation results. Finally, the calculation results are analyzed. The research results in this paper can provide technical support for the resistance of similar ship types.


2020 ◽  
Vol 12 (11) ◽  
Author(s):  
Domingo Muñoz‐Esparza ◽  
Jeremy A. Sauer ◽  
Hyeyum Hailey Shin ◽  
Robert Sharman ◽  
Branko Kosović ◽  
...  

Author(s):  
Zhiyuan Liu ◽  
Qingjun Zhao ◽  
Xiaorong Xiang ◽  
Wei Zhao ◽  
Xiaoyong Zhou

The flow in centrifugal compressors is viscous and unsteady. Flow separation off the blades challenges the accuracy of simulations. A viscous body force model is expected to speed up numerical convergence and reduce the computational costs of unsteady simulations. In this paper, both stability and accuracy of the viscous body force model are investigated based on the case of a low-speed centrifugal compressor. First, two formulations of the viscous body forces are obtained from the expression of the viscous flux. Then, the numerical stability of two body force models is found to be related to drag coefficient and flow angle. For large negative drag coefficients, the viscous body forces would lead to divergences. Since unsteady Reynolds-averaged Navier–Stokes simulations show that two formulas have considerable accuracy, stability is considered as the main factor for modeling. With the findings, a hybrid viscous body force method is proposed. To assess the applicability of the hybrid model, two test cases are compared against the results obtained by unsteady Reynolds-averaged Navier–Stokes simulations. The first case is the capability evaluation of unsteady characteristics capture for low-speed centrifugal compressors. The simulation results show that the hybrid viscous body force model can capture main unsteady viscous characters, including wake vortexes and tip leakage flow. The other is the case in which the inlet total pressure is disturbed. It is found that fluctuations of pressure, temperature, and velocity predicted by the viscous body force method are close to unsteady Reynolds-averaged Navier–Stokes results. In addition, the time-accurate overall performance of the compressor with disturbance is also predicted satisfactorily. With the advantage in lowering computer resource requirement, the viscous body force model is a promising method for long length scale unsteady cases.


2019 ◽  
Vol 827 ◽  
pp. 397-403
Author(s):  
Takuichiro Ino ◽  
Yohei Sonobe ◽  
Atsuhiro Koyama ◽  
Akihide Saimoto

Based on the principle of a Body Force Method (BFM), any inclusion problem can besolved only by using a Kelvin solution which corresponds to a stress field caused by a point forceacting in a homogeneous infinite plate, regardless of the mechanical properties of the inclusion. Thischaracteristic is true even for an anisotropic inclusion in which the number of independent elasticconstants are larger than that of a homogeneous material. In the present study, some problems among anisotropic inclusions were analyzed numerically to demonstrate the validity.


Author(s):  
Zhiheng Li ◽  
Jiawei Yu ◽  
Dakui Feng ◽  
Kaijun Jiang ◽  
Yujie Zhou

Abstract The virtual propeller model can achieve the rapid numerical prediction of the ship self-propulsion performance through viscous flow, which used the improved body-force method. The two-dimensional lift coefficient CL and the drag coefficient CD are very important parameters in this method, which are generally obtained by the potential flow methods and cannot incorporate viscous effects. This study will perform a fully nonlinear unsteady RANS (Reynolds Average Navier-Stokes) simulation to get the KP505 open-water characteristics and then divide its blade into several parts to get the lift coefficient CL and the drag coefficient CD on each one. Then fitting by multivariate regression method, the relationship between CL, CD and propeller parameters is obtained. The Unsteady Blade Element Theory (UBET) is coupled with RANS in house CFD code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) to calculate the flow around the propeller. RANS equations are solved by the finite difference method and PISO arithmetic. have been made using structured grid with overset technology. The results show that comparing with the EFD data, the maximum differences of the result of the improved body-force method are 4.32% and 2.7% for the thrust coefficient and the torque coefficient respectively near the propeller operating point.


Sign in / Sign up

Export Citation Format

Share Document