Study of Active Vibration Control for Flexible Beam’s Vibration

2009 ◽  
Vol 69-70 ◽  
pp. 685-689
Author(s):  
Li Zhang ◽  
Shi Ming Ji ◽  
Yi Xie ◽  
Qiao Ling Yuan

The attenuation of structure vibration is very slow when flexible strucure is stirred external force. It seriously affected the life of flexible structure. Smart structures used piezoelectric ceramics as actuators are an effective manner to solve the problem. This paper uses Fiber Bragg Grating (FBG) as sensors and piezoelectric ceramics as actuators to study the active vibration control for the resonance of the smart beam. Two groups of piezoelectric ceramics will be used for vibration exciter and vibration abatement, respectively. The fiber smart beam is excited to a sharp vibration nearby the particular resonance frequency by controlling the frequency of the vibration excitation. The vibration signal is measured by the FBG sensors and the close loop feedback control is fulfilled by the vibration abatement group, and the vibration amplitude of the fiber smart beam is abated. The experiment results show that the resonance amplitude of the beam is obviously abated by adjusting the frequency, amplitude and phase of the vibration abatement circuit.

1990 ◽  
Vol 1 (2) ◽  
pp. 189-206 ◽  
Author(s):  
Roy Ikegami ◽  
David G. Wilson ◽  
John R. Anderson ◽  
Gerald J. Julien

2018 ◽  
Vol 24 (11) ◽  
pp. 1
Author(s):  
Hadeer Abd UL-Qader Mohammed ◽  
Hatem Rahem Wasmi

Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.   In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effect of changing the length of the smart cantilever beam. A cantilever beam with piezoelectric is modeled in Mechanical APDL ANSYS version 15.0 and verified this by using experimental work. The AVC was tested on a smart beam under different control gains in experimental work and chose the best control gain depending on FEM results for each length of the smart beam. The response of the smart beam is noticed to be different for every length and the reduction percentage for settling time was different for every length.  


2012 ◽  
Vol 488-489 ◽  
pp. 1777-1782
Author(s):  
Alireza Akbarzadeh ◽  
Mohsen Fallah ◽  
Navid Mahpeykar ◽  
Nader Nabavi

Cantilevered beams can serve as a basic model for a number of structures used in various fields of industry, such as airplane wings, turbine blades and robotic manipulator arms.In this paper, the active vibration control of a smart cantilevered beam with a piezoelectric patch is studied. Additionally, the optimization of influential parameters of piezoelectric actuator for the purpose of vibration suppression is performed. Initially, the finite element modeling of the cantilevered beam and its piezoelectric patch is described and the implementation of a control system for vibration suppression is introduced. Transient response of the system under impact loading, with and without controller, is simulated using ANSYS. Taguchi’s design of experiments method is used to investigate the effect of five geometric parameters on the vibrational behavior of the system. It is shown that, optimal selection of levels for geometry of the piezoelectric actuator and sensor, can dramatically improve the dynamic response of the smart beam.


2020 ◽  
Vol 10 (6) ◽  
pp. 6549-6556
Author(s):  
K. G. Aktas ◽  
I. Esen

The aim of this study is to design a Linear Quadratic Regulator (LQR) controller for the active vibration control of a smart flexible cantilever beam. The mathematical model of the smart beam was created on the basis of the Euler-Bernoulli beam theory and the piezoelectric theory. State-space and finite element models used in the LQR controller design were developed. In the finite element model of the smart beam containing piezoelectric sensors and actuators, the beam was divided into ten finite elements. Each element had two nodes and two degrees of freedom were defined for each node, transverse displacement, and rotation. Two Piezoelectric ceramic lead Zirconate Titanate (PZT) patches were affixed to the upper and lower surfaces of the beam element as pairs of sensors and actuators. The location of the piezoelectric sensor and actuator pair changed and they were consecutively placed on the fixed part, the middle part, and the free end of the beam. In each case, the design of the LQR controller was made considering the first three dominant vibratory modes of the beam. The effect of the position of the sensor-actuator pair on the beam on the vibration damping capability of the controller was investigated. The best damping performance was found when the sensor-actuator pair was placed at the fixed end.


Sign in / Sign up

Export Citation Format

Share Document