sensor actuator
Recently Published Documents


TOTAL DOCUMENTS

693
(FIVE YEARS 73)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Junyang Shi ◽  
Xingjian Chen ◽  
Mo Sha

IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.


Author(s):  
Shiva Kumar V. ◽  
Rajashree V. Biradar ◽  
V. C. Patil

the technology of wireless sensor-actuator networks (WSANs) is widely employed in the applications of IoT due to its wireless nature and it does not involve any wired structure. The wireless systems that are battery-driven can easily reconfigure the existing devices and sensors efficiently in the manufacturing units without employing any cable for power operation as well as for communication. The wireless sensor-actuator networks that are based on IEEE 802.15.4 consumes significantly less power. These networks are designed and built cost-effectively by considering the capacity of battery and expense so that they can be employed for many applications. The application of a typical wireless Autonomous Scheduling and Distributed Graph Routing (DDSR) has illustrated the reliability of employing its basic approaches for almost ten years and it consists of the accurate plot for routing and time-slotted channel hopping therefore ensuring accurate low-power wireless communication in the processing site. Officially declared by the controversial statements associated with the government of Greek experiences fourth industrialization. There is a huge requirement for sensor nodes link via WSAN in the industrial site. Also, reduced computational complexity is one of the drawbacks faced by the existing standards of WSAN which is caused because of their highly centralized traffic management systems and thereby significantly improves the consistency and accessibility of network operations at the expense of optimization. This research work enables the study of efficient Wireless DGR network management and also introduces an alternative for DDSR by enabling the sensor nodes to determine their data traffic routes for the transmission of data. When compared to the above two physical routing protocols, the proposed technique can drastically improve the performance of a network, throughput, and energy consumption under various aspects. Energy harvesting (EH) plays a significant role in the implementation of large IoT devices. The requirement for subsequent employment of power sources is eliminated by The efficient approach of Energy Harvesting and thereby providing a relatively close- perpetual working environment for the network. The structural concept of routing protocols that are designed for the IoT applications which are based on the wireless sensor has been transformed into "energy-harvesting-aware" from the concept of "energy-aware" because of the development in the Energy harvesting techniques. The main objective of the research work is to propose a routing protocol that is energy-harvesting-aware for the various network of IoT in case of acoustic sources of energy. A novel algorithm for routing called Autonomous Scheduling and Distributed Graph Routing (DDSR) has been developed and significantly improved by incorporating a new “energy back-off” factor. The proposed algorithm when integrated with various techniques of energy harvesting enhances the longevity of nodes, quality of service of a network under increased differential traffic, and factors influencing the accessibility of energy. The research work analyses the performance of the system for various constraints of energy harvesting. When compared to previous routing protocols the proposed algorithm achieves very good energy efficiency in the network of distributed IoT by fulfilling the requirements of QoS.


Author(s):  
Nada N. Tawfeeq ◽  
Sawsan D. Mahmood

<span lang="EN-US">New communication and networking paradigms started with wireless sensor actuator networks (WSANs) to introduce new applications. One of these is the automatic gain control system (AGC). It will enable a high degree of the decentralized and mobile control. In this study, neural networks (NN) with fuzzy logic (one of the techniques of artificial intelligence (AI)) is used to enhance the control performance depending on the link quality. The NN and fuzzy inference system (FIS) with Mamdani’s method used to build a model reference, adaptive controller, for recompensing for delay time packets losses, and improving the reliability of WSAN. Between 88.62% and 99.99%, validation data is obtained for the medium and high conditions of operation with the proposed algorithm. Experimental and simulation results show a promising approach.</span>


2021 ◽  
Vol 7 (2) ◽  
pp. 578-581
Author(s):  
Ashish Bhave ◽  
Knut Möller

Abstract The Urethra is a long tubular structure in the genitourinary tract and serves important functions. Researchers have experimented with some approaches to model the urethra and to analyse its biomechanical properties. However, experiments to model the in-vivo behaviour of urethra with strictures is not thoroughly explored. To analyse the in-vivo urethral properties and specifically for supporting treatment of strictures, a new inflatable sensor-actuator system is being developed. The capabilities of this sensor shall be evaluated in simulations which require appropriate modelling of the human male urethra with strictures. This forms a part of the identification procedure for a variety of urethra conditions and geometries, which in turn forms a basis for inverse modelling. As an initial simplified approach, an axisymmetric Finite Element model was generated that resembled the urethra incorporating a stricture region. An ideal actuator with sensor elements exerting a pressure on inner wall of this urethra was simulated. Three circumference measurement zones within the sensor height (top surface, centre and bottom surface) were implemented. The resulting pressure-extension (circumferential) responses were determined at these measurement zones. The sensor was placed at different lengths within this urethral tube and inflated and the pressure-extension responses were noted. It was found that depending on the position of the sensor-actuator, the extension of tissue can vary. The possible factors for this variation were the finite length of the actuator as well as the influence of tissue properties around the measurement zones. This is important information for the interpretation of sensor data to be gained by the current development. It was possible to generate datasets based on an ideal sensor model, that proved helpful in the evaluation of biomechanical tissue properties in healthy and stricture conditions. This indicates simulations are a versatile and prospective way to test new sensors prior to real experiments.


2021 ◽  
pp. 107754632110358
Author(s):  
Runze Ding ◽  
Ding Chenyang ◽  
Xu Yunlang ◽  
Xiaofeng Yang

Disturbances acting on flexible structures at spatially varying locations instead of fixed points may lead to deteriorated vibration control performance. To tackle this problem, this article presents an optimal sensor/actuator placement method, in which the closed-loop spatial [Formula: see text] norm is employed as the optimization criterion. In addition, a new way to calculate the spatial [Formula: see text] norm is proposed, which is independent of the modal orthogonality assumption in previous research. An optimization framework is established to optimize sensor/actuator placement by minimizing the closed-loop spatial [Formula: see text] norm using the genetic algorithm. Comprehensive numerical simulations are implemented on a fixed-fixed plate to validate the proposed method. Results show that magnitude of vibrations is reduced and decays faster after the optimization, which indicates that the proposed method markedly improves control performance when spatially varying disturbances exist.


2021 ◽  
Vol 155 ◽  
pp. 107533
Author(s):  
Dimitri Piron ◽  
Shashank Pathak ◽  
Arnaud Deraemaeker ◽  
Christophe Collette

Sign in / Sign up

Export Citation Format

Share Document