resonance amplitude
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 31)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Jiawei Gu ◽  
Zhijiang Xie ◽  
Jian Zhang ◽  
Yangjun Pi

When a parallel robot is equipped with kinematic redundancy, it has sufficient capabilities of natural frequency modulation through adjusting geometric configuration. To reduce resonance of a mechanism, this paper investigates the natural frequency modulation of a kinematically redundant planar parallel robot. A double-threshold searching method is proposed for controlling the inverse kinematics solution and keeping the natural frequencies away from the excitation frequency. The effectiveness of modulating the natural frequencies is demonstrated by comparing it with a non-modulation method. The simulation results indicate that, in all directions, the responses are coupled, and every order should be taken into consideration during natural frequency modulation. Compared to the non-modulation method, the proposed method can reduce the resonance amplitude to a certain extent, and the effect of vibration suppression is remarkable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeonsoo Lim ◽  
Soo-Chan An ◽  
Hoon Yeub Jeong ◽  
Thi Hai-Yen Nguyen ◽  
Gangil Byun ◽  
...  

AbstractSpoof surface plasmons in corrugated metal surfaces allow tight field confinement and guiding even at low frequencies and are promising for compact microwave photonic devices. Here, we use metal-ink printing on flexible substrates to construct compact spoof plasmon resonators. We clearly observe multipole resonances in the microwave frequencies and demonstrate that they are still maintained even under significant bending. Moreover, by combining two resonators of slightly different sizes, we demonstrate spectral filtering via the Vernier effect. We selectively address a target higher-order resonance while suppressing the other modes. Finally, we investigate the index-sensing capability of printed plasmonic resonators. In the Vernier structure, we can control the resonance amplitude and frequency by adjusting a resonance overlap between two coupled resonators. The transmission amplitude can be maximized at a target refractive index, and this can provide more functionalities and increased design flexibility. The metal-ink printing of microwave photonic structures can be applied to various flexible devices. Therefore, we expect that the compact, flexible plasmonic structures demonstrated in this study may be useful for highly functional elements that can enable tight field confinement and manipulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kefan Chen ◽  
Shuanhai He ◽  
Yifan Song ◽  
Linming Wu ◽  
Kang Wang ◽  
...  

The investigation aims to propose a refined model to analyze the parametric resonance under multicable systems such as cable-stayed bridges. Considering the interaction between the adjacent beam portions, the shear difference is applied to modify the vibration equations derived from the multi-degree-of-freedom stiffness method. Furthermore, the difference method is adopted to make the equations more accessible for numerical analysis. The comparison results indicate that the refined model exhibits the key character of parametric resonance and also further verified the simulation methods. The consequences show that the cable will resonate at the fundamental frequency under the support excitation. In particular, when resonance occurs, most of the energy in the subsystem is transferred to the cable, resulting in the resonance amplitude of the beam portion being weakened to some certain extent. Moreover, the global resonance will have a sufficient excitation on the local resonance only when the resonance condition is satisfied.


Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 361
Author(s):  
Giuseppe Brunetti ◽  
Donato Conteduca ◽  
Mario Nicola Armenise ◽  
Caterina Ciminelli

According to the World Health Organization forecasts, AntiMicrobial Resistance (AMR) is expected to become one of the leading causes of death worldwide in the following decades. The rising danger of AMR is caused by the overuse of antibiotics, which are becoming ineffective against many pathogens, particularly in the presence of bacterial biofilms. In this context, non-destructive label-free techniques for the real-time study of the biofilm generation and maturation, together with the analysis of the efficiency of antibiotics, are in high demand. Here, we propose the design of a novel optoelectronic device based on a dual array of interdigitated micro- and nanoelectrodes in parallel, aiming at monitoring the bacterial biofilm evolution by using optical and electrical measurements. The optical response given by the nanostructure, based on the Guided Mode Resonance effect with a Q-factor of about 400 and normalized resonance amplitude of about 0.8, allows high spatial resolution for the analysis of the interaction between planktonic bacteria distributed in small colonies and their role in the biofilm generation, calculating a resonance wavelength shift variation of 0.9 nm in the presence of bacteria on the surface, while the electrical response with both micro- and nanoelectrodes is necessary for the study of the metabolic state of the bacteria to reveal the efficacy of antibiotics for the destruction of the biofilm, measuring a current change of 330 nA when a 15 µm thick biofilm is destroyed with respect to the absence of biofilm.


2021 ◽  
Author(s):  
Hui Liu ◽  
Wei Zhang ◽  
Xun Zhang ◽  
Zhen Wang ◽  
Pengfei Yan

Abstract The high-power electromechanical transmission(EMT) system is a typical dual-mode hybrid power transmission system. The torque fluctuation of internal combustion engine causes serious shock and vibration problems of EMT. It is an important way to improve the life and smoothness of EMT system by using high dynamic regulation of motor torque to suppress the torsional resonance amplitude. Firstly, a lumped parameter rotational dynamic model of multi degree of freedom EMT system is established, and the inherent torsional vibration characteristics and dynamic coupling mechanism of the system are analyzed. Secondly, based on the synchronous response of the two motors in the open-loop state, a master-slave coupling EMT torsional active control strategy is proposed, and a speed feedback proportional differential control algorithm is designed. Then, the influence of control parameters, including lever coefficient Kab, proportional coefficient Kp and differential coefficient Kd, on the vibration characteristics of the system is analyzed. Finally, the calculation is carried out in the frequency domain and compared with the optimal modal control algorithm. The results show that the lever coefficient Kab and differential coefficient Kd of master-slave control can change the natural frequency of torsional vibration of the system, thus significantly changing the vibration response of the system. Selecting appropriate control parameters can achieve peak clipping of EMT torsional resonance amplitude, which is also of great significance to improve the NVH performance of the system.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Julius Kühne ◽  
Juan Wang ◽  
Thomas Weber ◽  
Lucca Kühner ◽  
Stefan A. Maier ◽  
...  

Abstract All-dielectric metasurfaces supporting photonic bound states in the continuum (BICs) are an exciting toolkit for achieving resonances with ultranarrow linewidths. However, the transition from theory to experimental realization can significantly reduce the optical performance of BIC-based nanophotonic systems, severely limiting their application potential. Here, we introduce a combined numerical/experimental methodology for predicting how unavoidable tolerances in nanofabrication such as random geometrical variations affect the performance of different BIC metasurface designs. We compare several established all-dielectric BIC unit cell geometries with broken in-plane inversion symmetry including tilted ellipses, asymmetric double rods, and split rings. Significantly, even for low fabrication-induced geometrical changes, both the BIC resonance amplitude and its quality factor (Q-factor) are significantly reduced. We find that the all-dielectric ellipses maintain the highest Q-factors throughout the geometrical variation range, whereas the rod and split ring geometries fall off more quickly. The same behavior is confirmed experimentally, where geometrical variation values are derived from automated processing of sets of scanning electron microscopy (SEM) images. Our methodology provides crucial insights into the performance degradation of BIC metasurfaces when moving from simulations to fabricated samples and will enable the development of robust, high-Q, and easy to manufacture nanophotonic platforms for applications ranging from biomolecular sensing to higher harmonic generation.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4022
Author(s):  
Ying Hao ◽  
Ming Gao ◽  
Yuda Hu ◽  
Yuehua Li

The remarkable properties of shape memory alloys (SMA) are attracting significant technological interest in many fields of science and engineering. In this paper, a nonlinear dynamic analytical model is developed for a laminated beam with a shape memory alloy layer. The model is derived based on Falk’s polynomial model for SMAs combined with Timoshenko beam theory. In addition, axial velocity, axial pressure, temperature, and complex boundary conditions are also parameters that have been taken into account in the creation of the SMA dynamical equation. The nonlinear vibration characteristics of SMA laminated beams under 1:3 internal resonance are studied. The multi-scale method is used to solve the discretized modal equation system, the characteristic equation of vibration modes coupled to each other in the case of internal resonance, as well as the time-history and phase diagrams of the common resonance amplitude in the system are obtained. The effects of axial velocity and initial conditions on the nonlinear internal resonance characteristics of the system were also studied.


Author(s):  
Sayyid H. Hashemi Kachapi

Abstract In this paper, nonlinear vibration and frequency response analysis of double walled piezoelectric nanoshell (DWPENS) is investigated using nonclassical approach of the Gurtin–Murdoch surface/interface (GMSIT) theory. The piezoelectric nanoshell is simultaneously subjected to visco-Pasternak medium, the nonlinear van der Waals and electrostatic forces. Hamilton’s principles, the assumed mode method combined with Lagrange–Euler’s are used for the governing equations and boundary conditions. Complex averaging method combined with Arc-length continuation is used to achieve the nonlinear frequency response and stability analysis of the DWPENS. It is found that the electrostatic and piezoelectric voltages, the length to radius ratio, the nanoshell gap width, van der Waals (vdW) coefficients and other parameters can effectively change the flexural rigidity of the system which in turn affects the nonlinear frequency response. And also, increasing or decreasing of some parameters lead to increasing or decreasing the resonance amplitude, resonant frequency, the system’s instability, nonlinear behavior, and bandwidth.


Sign in / Sign up

Export Citation Format

Share Document