Nonlinear Dynamics Analysis of Gear System Considering Unbalance and Loosening Faults

2014 ◽  
Vol 875-877 ◽  
pp. 1976-1981 ◽  
Author(s):  
Li Cui ◽  
Da Fang Shi ◽  
Jian Rong Zheng ◽  
Xiao Guang Song

Considering backlash, radial clearance of bearing and time-varying mesh stiffness, nonlinear dynamic model of gear bearing rotor system is established considering unbalance and loosening fault. Nonlinear dynamic equations are solved using Runge-Kutta method and Newton-Raphson method. Numerical simulations of the dynamic equations and the affection of the depth of crack and length of wear to the nonlinear dynamic behavior are studied. The results shows that tooth off, bilateral impact phenomenon are occurred, with increasing gear failure when unbalance occurs, and the gear system exhibits a diverse range of periodic, quasi-periodic and chaotic motion. When loosening fault occurs, the range of chaos motion is increased, and gear burnishing is also intensified.

2015 ◽  
Vol 9 (1) ◽  
pp. 483-491 ◽  
Author(s):  
Li Cui ◽  
Chilan Cai

Considering backlash, time-varying mesh stiffness and radial clearance of bearing, nonlinear dynamic model of gear bearing flexible shaft system is established taking into account breathing crack in shaft and tooth wear. Nonlinear dynamic equations are solved by Runge-Kutta method. Effect of backlash, crack in shaft and tooth wear faults on the nonlinear dynamic behavior of gear-shaft-bearing system is studied. The results show that gear-shaft-bearing system may change from periodic motion to non-periodic motion as backlash increases, and gear pair change from normal mesh to tooth separation, double-sided impact fault. If crack fault appears, quasi-periodic and chaos motion region increases, and gentle crack fault can result in instantaneous tooth separation and double-sided impact faults. Serious tooth wear fault will also induce tooth separation and double-sided impact faults. If both shaft crack and tooth wear faults exist, tooth wear fault will be intensified by double-sided impact fault from shaft crack, which will result in early failure of the gear system.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150148
Author(s):  
Ling Xiang ◽  
Chaohui An ◽  
Aijun Hu

Crack in gears impacts the dynamic response of wind turbine multistage gear system, which also influences the safe operation of wind turbine. A translational–torsional nonlinear dynamic model of the multistage gear system is proposed with root crack fault. The model considers the effects of sun gear support, time-varying mesh stiffness, gear backlash and other factors. The mesh stiffness with root crack is analyzed by using potential energy method. Based on the Runge–Kutta method, the system responses are obtained with multiple parameters changing. The nonlinear dynamic features of the cracked and normal system are compared by bifurcation diagram, time series, phase trajectory, Poincaré map, spectrum diagram and corresponding three-dimensional diagrams. The analyses show the effects of input torque, backlash, crack occurrence and evolution on the system dynamic behaviors, and the effect of crack fault on the gear system response is further verified by experiment. The results provide a theoretical basis for the cognition of fault mechanism and fault diagnosis of wind turbine gearbox.


2001 ◽  
Vol 33 (5-8) ◽  
pp. 10
Author(s):  
Tatyana I. Aksenova ◽  
Igor V. Tetko ◽  
Olga K. Chibirova ◽  
Alexandro Villa

Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1897
Author(s):  
Taher S. Hassan ◽  
Yuangong Sun ◽  
Amir Abdel Menaem

In this paper, the functional dynamic equation of second order is studied on an arbitrary time scale under milder restrictions without the assumed conditions in the recent literature. The Nehari, Hille, and Ohriska type oscillation criteria of the equation are investigated. The presented results confirm that the study of the equation in this formula is superior to other previous studies. Some examples are addressed to demonstrate the finding.


Sign in / Sign up

Export Citation Format

Share Document