Deformation Prediction of the Bipolar Plate Stamping

2014 ◽  
Vol 971-973 ◽  
pp. 270-274
Author(s):  
Hao Gao ◽  
Jian Lan ◽  
Lin Hua

Bipolar plate is the key component of proton exchange membrane (PEM) fuel cell and represents a significant part of the overall cost and the total weight in a fuel cell stack. Many research have been done on the manufacturing methods of bipolar plate, among which stamping is very popular. With the increasing of the channel number and complexity, its dimensional error caused by sprinkback will change a lot, even under the same forming process. And the risk of crack is also different. These all impact the quality of bipolar plate. In order to predict deformation of channels and the plate’s quality, the displacement along X-axis, the strain and stress state, and the displacement along Z-axis are measured. The results show that 1) the risk of crack increases with the increasing of channel number; 2) the springbacks increase with the increasing of channel number; 3) the most dangerous point locates on the right internal fillet of the plate’s last section.

2011 ◽  
Vol 228-229 ◽  
pp. 1029-1034
Author(s):  
Jian Lan ◽  
Chen Ni ◽  
Lin Hua

As a key component of proton exchange membrane fuel cell (PEMFC), the bipolar plate’s performance will directly affect the power output and battery life of the fuel cell. The conventional metallic bipolar plate is prone to warp, and has large flatness error with residual stress induced by forming process. This will result in contacting incompletely with membrane electrode assemblies (MEA) and lower fuel cell efficiency. A cylindrical structure of the PEMFC metallic polar plate is proposed to improve its stiffness and to reduce assembling error of the fuel cell. The polar plate features, which were originally designed on a flat surface, are projected onto the cylindrical surface with a certain curvature. Two cylindrical polar plates are welded together to become a bipolar plate. The finite element method is applied to compare the stiffness of the conventional and cylindrical polar & bipolar plates. The cylindrical bipolar plate has better stiffness and anti-warping than the conventional bipolar plate. The feasibility of the cylindrical structure is verified by experiment and provides a new idea for the improvement of the bipolar plate and fuel cell stack.


2018 ◽  
Vol 43 (7) ◽  
pp. 2605-2614 ◽  
Author(s):  
Kailin Fu ◽  
Tian Tian ◽  
Yanan Chen ◽  
Shang Li ◽  
Chao Cai ◽  
...  

Fuel Cells ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 724-730 ◽  
Author(s):  
T. Li ◽  
P. C. Zhang ◽  
K. Liu ◽  
S. Xu ◽  
Y. T. Han ◽  
...  

2017 ◽  
Vol 41 (14) ◽  
pp. 2184-2193 ◽  
Author(s):  
Wen Dong-Hui ◽  
Yin Lin-Zhi ◽  
Piao Zhong-Yu ◽  
Lu Cong-Da ◽  
Li Gang ◽  
...  

2018 ◽  
Vol 42 (17) ◽  
pp. 14394-14409 ◽  
Author(s):  
S. Pugal Mani ◽  
Bhavana Rikhari ◽  
Perumal Agilan ◽  
N. Rajendran

In the present investigation, the corrosion behavior of TiN-coated 316L SS was evaluated for use in a proton-exchange membrane fuel cell using dynamic electrochemical impedance spectroscopy (DEIS).


Sign in / Sign up

Export Citation Format

Share Document