The Cylindrical Structure of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell

2011 ◽  
Vol 228-229 ◽  
pp. 1029-1034
Author(s):  
Jian Lan ◽  
Chen Ni ◽  
Lin Hua

As a key component of proton exchange membrane fuel cell (PEMFC), the bipolar plate’s performance will directly affect the power output and battery life of the fuel cell. The conventional metallic bipolar plate is prone to warp, and has large flatness error with residual stress induced by forming process. This will result in contacting incompletely with membrane electrode assemblies (MEA) and lower fuel cell efficiency. A cylindrical structure of the PEMFC metallic polar plate is proposed to improve its stiffness and to reduce assembling error of the fuel cell. The polar plate features, which were originally designed on a flat surface, are projected onto the cylindrical surface with a certain curvature. Two cylindrical polar plates are welded together to become a bipolar plate. The finite element method is applied to compare the stiffness of the conventional and cylindrical polar & bipolar plates. The cylindrical bipolar plate has better stiffness and anti-warping than the conventional bipolar plate. The feasibility of the cylindrical structure is verified by experiment and provides a new idea for the improvement of the bipolar plate and fuel cell stack.

2012 ◽  
Vol 445 ◽  
pp. 108-113 ◽  
Author(s):  
H.J. Kwon ◽  
Y.P. Jeon ◽  
Chung Gil Kang

A Proton Exchange Membrane Fuel Cell (PEMFC) is a type of fuel cell being developed for automotive applications as well as for stationary fuel cell applications and portable fuel cell applications. Its performance such as power density can be improved by the use of the bipolar plate with a new lightweight material which is one of core components making up PEMFC stack. Aluminum alloy has good mechanical properties not only in terms of density, electrical resistivity and thermal conductivity, but also in terms of corrosion resistant compared with stainless steel and graphite composites bipolar plate. Furthermore, the use of aluminum for a bipolar plate reduces simultaneously the cost and weight of it, and it contributes to the ease of machining. For these reason, an aluminum alloy is selected in this study. This study presents the feasibility of the simulation for the development of aluminum bipolar plates that consists of multi array micro channels. The analytical solutions obtained by the simulation are validated by the comparison with the experimental results. From the results, it is ensured that the stamping processes for the bipolar plate could be predicted and designed by the results of the by FE-Simulation.


2014 ◽  
Vol 971-973 ◽  
pp. 270-274
Author(s):  
Hao Gao ◽  
Jian Lan ◽  
Lin Hua

Bipolar plate is the key component of proton exchange membrane (PEM) fuel cell and represents a significant part of the overall cost and the total weight in a fuel cell stack. Many research have been done on the manufacturing methods of bipolar plate, among which stamping is very popular. With the increasing of the channel number and complexity, its dimensional error caused by sprinkback will change a lot, even under the same forming process. And the risk of crack is also different. These all impact the quality of bipolar plate. In order to predict deformation of channels and the plate’s quality, the displacement along X-axis, the strain and stress state, and the displacement along Z-axis are measured. The results show that 1) the risk of crack increases with the increasing of channel number; 2) the springbacks increase with the increasing of channel number; 3) the most dangerous point locates on the right internal fillet of the plate’s last section.


2013 ◽  
Vol 10 (4) ◽  
Author(s):  
Szu-Hua Wang ◽  
Wai-Bun Lui ◽  
Jinchyau Peng ◽  
Jin-Sheng Zhang

In this current study, we are attempting to build up a light weight and corrosion resistant bipolar plate for the proton exchange membrane fuel cell. A titanium bipolar plate substrate has been chosen as the base metal due to its low cost, simplicity to manufacture into stampable bipolar plates, and its light weight. Our goal is to obtain a smaller and lighter weight single fuel cell is to sinter titanium with a corrosion resistant material. Iridium oxide (IrO2) was investigated. The cell performance of the iridium oxide-sintered bipolar plates is close to and even better than the proton exchange membrane fuel cells, with graphite and pure titanium bipolar plates at low operating temperature with low and high membrane humidifier temperatures, respectively. Iridium oxide-sintered titanium bipolar plates can be employed to produce fuel cells with light weight and low sintering cost, ideal for portable applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Yoshiyuki Show ◽  
Toshimitsu Nakashima ◽  
Yuta Fukami

Composite film of carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS) bipolar plates of the proton exchange membrane fuel cell (PEMFC) as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA) of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.


Author(s):  
Elaine Petrach ◽  
Ismat Abu-Isa ◽  
Xia Wang

The bipolar plate is an important and integral part of the proton exchange membrane (PEM) fuel cell and PEM fuel cell stacks. Currently bipolar plates represent more than 80% by weight and 40% by cost of the fuel cell stack. Traditional materials used for bipolar plates are primarily graphite and metal. Search for alternative materials to improve weight and cost considerations is needed. This paper discusses the results of an investigation of two elastomeric materials being developed for bipolar plate applications. Perceived advantages of the use of elastomers for this application include improved sealability without additional gasket material, reduction in the contact resistance between individual cells, improved formability, and weight reduction. The first elastomer investigated is a two component liquid silicone rubber, and the second is a polyolefin thermoplastic elastomer. These polymer matrix materials are made electrically conductive by the addition of conductive fillers including thermal graphite fibers (Cytec DKD & CKD), high surface area conductive carbon black nanoparticles (Cabot Black Pearls 2000), and graphite flakes (Asbury 4012). Electrical conductivity, processability, and elastic behavior measurements of the composites have been conducted. Some of silicone-graphite fiber composites material exhibit conductivity values comparable to those of the traditional graphite plate materials. Elasticity of all composites is maintained even at high filler concentrations.


Sign in / Sign up

Export Citation Format

Share Document