On the Analytical Inversion of Solver Matrices Used in Numerical Approximations for the Diffusion Equation

2021 ◽  
Vol 413 ◽  
pp. 3-18
Author(s):  
Till Glage ◽  
Axel von der Weth ◽  
Frederik Arbeiter ◽  
Daniela Piccioni Koch

The goal of this paper is to introduce an analytical approach for the inversion of nxn solver matrices, which are typically used in Finite Difference Method approximations. In the present case, they are used to solve the Diffusion Equation numerically, since in many physics and engineering fields, partial differential equations cannot be solved analytically. The method presented in this work is primarily formulated for cylindrical coordinates, which are often used in Gas Release Experiments as those described in [8]. However, it is possible to introduce a generalized method, which also allows solutions for Cartesian solvers. The advantage of having the explicit inverse is considerable, since the computational effort is reduced. In this paper we also carry out an investigation on the eigenvalues of the backward and forward solver matrix in order to determine an optimal range for the discretization parameters.

Author(s):  
Noorulhaq Ahmadi ◽  
Mohammadi Khan Mohammadi

In this work, we discuss a hybrid-based method on differential transforms and a finite difference method to numerical solution of convection–diffusion equation with Dirichlet’s type boundary conditions. The developed method is tested on various problems and the numerical results are reported in tabular and figure form. This method can be easily extended to handle non-linear convection–diffusion partial differential equations.


Author(s):  
Augusto César Ferreira ◽  
Miguel Ureña ◽  
HIGINIO RAMOS

The generalized finite difference method is a meshless method for solving partial differential equations that allows arbitrary discretizations of points. Typically, the discretizations have the same density of points in the domain. We propose a technique to get adapted discretizations for the solution of partial differential equations. This strategy allows using a smaller number of points and a lower computational cost to achieve the same accuracy that would be obtained with a regular discretization.


1983 ◽  
Vol 4 ◽  
pp. 198-203 ◽  
Author(s):  
E. M. Morris

This paper describes a deterministic, distributed snow-melt model which has been developed for the Systeme Hydrologique Européen (SHE), The model is based on partial differential equations describing the flow of mass and energy through the snow. These equations are solved by an implicit, iterative finite-difference method. The behaviour of the model is investigated using data from a sub-Arctic site in Scotland.


Sign in / Sign up

Export Citation Format

Share Document