A Method of J Testing Based on Crack Opening Displacement for Circumferential Through-Wall Cracked Pipes under Combined Tension and Bending

2006 ◽  
Vol 110 ◽  
pp. 63-70
Author(s):  
Nam Su Huh ◽  
Ludwig Stumpfrock ◽  
Eberhard Roos ◽  
Yun Jae Kim ◽  
Young Jin Kim

Application of the leak-before-break concept to nuclear piping requires accurate fracture mechanics assessment on pipes with postulated circumferential through-wall crack subject to combined tension and bending. One important element is determination of relevant J-resistance curve for pipes under combined loading. This paper provides experimental J estimation method for the circumferential through-wall cracked pipe under combined tension and bending, based on the load-crack opening displacement (COD) record to estimate J-resistance curve. To give confidence in the proposed method, the J results from detailed elastic-plastic finite element (FE) analysis are also compared with estimated J based not only on proposed method but also on conventional method using load-load line displacement, which shows that estimated J based on the proposed method provides reliable J estimates regardless of analysis condition, on the other hand, the conventional method using the load-load line displacement record gives erroneous results for shallow cracks.

2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Nam-Su Huh ◽  
Yun-Jae Kim

The present paper provides experimental J estimation equation based on the load-crack opening displacement (COD) record for testing the circumferential through-wall cracked pipe under combined tension and bending. Based on the limit analysis and the kinematically admissible rigid-body rotation field, the plastic η-factor for the load-COD record is derived and is compared with that for the load-load line displacement record. Comparison with the J results from detailed elastic-plastic finite element analysis shows that the proposed method based on the load-COD record provides reliable J estimates even for shallow cracks (small crack angle), whereas the conventional approach based on the load-load line displacement record gives erroneous results for shallow cracks. Thus, the proposed J estimation method could be recommended for testing the circumferential through-wall cracked pipe, particularly with shallow cracks.


2004 ◽  
Vol 47 (4) ◽  
pp. 591-599 ◽  
Author(s):  
Yun-Jae KIM ◽  
Nam-Su HUH ◽  
Young-Jin KIM ◽  
Jun-Seok YANG

Author(s):  
Min-Kyu Kim ◽  
Han-Bum Surh ◽  
Min-Gu Won ◽  
Nam-Su Huh ◽  
Moon-Ki Kim ◽  
...  

Leak-before-break (LBB) is an important concept that could confirm design and integrity evaluation of nuclear power plant piping. For the LBB analysis, the detective leakage rate should be calculated for a through-wall cracked pipes. For this calculation, the crack opening displacement (COD) calculation is essential. Recently, sodium faster reactor (SFR) which has thin-walled pipes with Rm/t ranged 30–40 was introduced and then the investigation of these thin walled pipes and elbows has received great attention in the LBB evaluation. In this context, the three-dimensional finite element (FE) analyses for thin elbows with circumferential crack under in-plane bending are carried out to investigate the elastic COD values. Finally, the solution for elastic COD which can cover sufficiently thin elbow is successfully addressed.


Author(s):  
Michael L. Benson ◽  
Bruce A. Young ◽  
Do-Jun Shim ◽  
Frederick W. Brust

For piping systems, leak-before-break calculations rely on estimates of leak rates when postulated cracks grow through the pipe wall. The leak rate, in turn, depends on the crack opening dimensions. Previous work on crack opening displacement (COD) includes recent advances in COD estimates for circumferentially-oriented cracks in cylinders under tension, bending, and internal pressure loading conditions. This paper summarizes previous work in this area and reports on new solutions for COD in the case of axially-oriented cracks under internal pressure. The results reported here include COD solutions at three locations through the wall thickness for axial cracks.


Author(s):  
Lee Fredette ◽  
F. W. Brust

The USNRC is anticipating updating their leak-before-break (LBB) procedures. One of the technical areas of concern in the existing procedures is the prediction of the crack-opening-displacements (COD) needed for estimating the postulated leakage crack size for a prescribed leakage detection capability. If cracks develop in the welded area of a pipe, as is often the case, residual stresses in the weld may cause the crack to be forced closed. Earlier studies have shown that pipe welding produces high residual stresses with a sharp stress gradient ranging from tension to compression through the thickness of the welded area of the pipe. The current guidelines are inadequate to predict crack size based on leak rates for cracks in welded areas of pipes. The current guidelines rely on the calculation of the crack-opening-displacement as related to pipe loading. Values from the current guidelines are used to predict a crack’s cross sectional area and, in turn, to determine the severity of an existing crack by monitoring in-service leakage rates. The equations currently in use are applicable to service loaded pipe material only. Residual stresses caused by cold work, welding, etc. are neglected. This study uses two and three dimensional finite element models and weld residual stress calculation software created at Battelle Memorial Institute to develop correction factors to be used with the traditional design equations. The correction factors will compensate for the effects of welding induced residual stresses on cracks in pipe welds. This study concentrates on type 316 stainless steel material properties, but the COD corrections should be equally applicable to all stainless steels, and also can be used for ferritic steels. A test matrix of pipe radius, thickness, and crack size was used to develop the equation correction factors. Pipe wall thicknesses (t) of 7.5 mm (0.295 in.), 15 mm (0.590 in.), 22.5 mm (0.886 in.), and 30 mm (1.181 in.) were studied in pipes with mean radius to thickness ratios of 5, 10, and 20. Cracks with half-lengths in radians of π/16, π/8, π/4, and π/2 were introduced in these virtual pipes. The matrix of results was used to produce correction factors for crack opening displacement equations applicable to a broad range of pipe sizes.


Sign in / Sign up

Export Citation Format

Share Document