Volume 6A: Materials and Fabrication
Latest Publications


TOTAL DOCUMENTS

97
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791855706

Author(s):  
S. Maleki ◽  
A. Mehmanparast ◽  
K. M. Nikbin

Practical time frames in newly developed steels, and technical and financial restrictions in test durations means that extrapolation of short-term laboratory test results to predict long-term high temperature service component failure is an area of concern when conducting a fitness for service or remaining life assessment. Recent literature presenting uniaxial creep and crack growth tests indicate that some materials show lower failure strains during longer term laboratory tests. The constraint based remaining failure ductility based NSW model crack prediction model has been shown to be capable of predicting upper/lower bounds of creep crack growth in a range of steels when data are obtained from relatively short to medium-term laboratory experiments (< 10,000 hours). This paper compares and analyses the response of the NSW model to predict long term creep crack propagation rates using a wide database of modified 9Cr material over s range of temperatures. The paper employs extrapolation methods of available uniaxial data to make viable conservative predictions of crack growth at high temperatures where at present no data is available.


Author(s):  
Yuji Nagae ◽  
Tai Asayama

316FR stainless steel is a candidate material to be used for a reactor vessel and internals for fast reactors with a design life of 60 years at an operating temperature of 823K. This paper describes an extrapolation approach based on fracture energy for calculating creep strength. A change in fracture energy is assumed to be expressed as a power-law function of time to failure and energy density rate. The energy density rate is calculated using initial stress, rupture elongation, and time to rupture. It is important to evaluate a change in rupture elongation for the extrapolation of creep strength at 823K. The time to rupture at 823K is estimated and extrapolated on the basis of the fracture energy approach. This paper shows the validity of extending the design life to 60 years by using the Larson–Miller parameter compared with the estimation by the fracture energy approach.


Author(s):  
Zhigang Wei ◽  
Limin Luo ◽  
Marek Rybarz ◽  
Kamran Nikbin

Corrosion-fatigue and stress corrosion cracking have long been recognized as the principal degradation and failure mechanisms of materials under combined corrosive environment and sustained/cyclic loading conditions. These phenomena are strongly material and environment dependent, and cycle-dependent fatigue and time-dependent matter diffusion/chemical reaction at the crack tip can be operational simultaneously. How to include these cycle-dependent and time-dependent phenomena in a single model and how to study the failure mechanisms interaction are big challenges posed to material scientists and engineers. In this paper the current linear superposition theories for modeling cycle-dependent and time-dependent corrosion-fatigue and stress corrosion cracking phenomena are reviewed first. Subsequently, a generalized nonlinear superposition theory is proposed to incorporate possible nonlinear interaction or synergistic effect among the underlying mechanisms. The unified model derived from the new theory, depending on the specific materials and loading condition and environment, can be reduced to pure corrosion, pure fatigue, stress corrosion cracking and corrosion-fatigue. Finally, for the first time, a new breakthrough parameter is defined in this paper to quantitatively describe the interaction or synergistic effect between two different operating mechanisms, such as time- and cycle-dependent mechanisms.


Author(s):  
Zhengkun Feng ◽  
Henri Champliaud ◽  
Louis Mathieu ◽  
Michel Sabourin

Hot pressing process is widely used in automotive, shipbuilding, energy production and civil engineering. However, the trial and error technique that is intensive time and energy consuming is still used. Particularly, the design of Francis turbines of hydropower plants is not standard, but variable from site to site due to hydraulic conditions and cost of energy. As a result, the blade hydraulic profile of each Francis turbine is different. The blades, one of the key components of Francis turbine runners, are produced in small batches and the setup of the dedicated punch and die increases significantly the unit production costs. In this paper, the blade unfolding process for optimal blank design will be firstly presented, and then a hot pressing process for very thick plates is proposed. The pressing process of high strength steel at hot temperature is characterized by thermo-mechanical behaviors, three-dimensional unsteady deformation, high nonlinearity, continuous local forming. The analyses of residual stress distribution and applied forces are carried out.


Author(s):  
Kimitoshi Yoneda ◽  
Ryo Morita ◽  
Kazutoshi Fujiwara ◽  
Fumio Inada

Flow accelerated corrosion (FAC) and liquid droplet impingement erosion (LDI) are the main pipe wall thinning phenomena in piping system of power plants in Japan. Authors have promoted the development of prediction method to evaluate local thinning trend by FAC/LDI. To apply the method to pipe wall thinning management in power plants, it is required to be transformed into practical tools for easy usage. In Japan, discussion is being made to considerate the introduction of prediction tools into wall thinning management based on wall thickness measurement at present. Authors have simplified their FAC/LDI models to predict wall thinning trend one-dimensionally along piping layout, and applied to actual thinning data of power plants. With PWR’s FAC data and BWR’s LDI data, maximum thinning rate for each pipe elements were roughly predictable with considerable accuracy. Especially for high thinning rate data, which is important in plant management, the model was able to evaluate within the factor of 2. By installing this model, prediction software “FALSET” was developed, equipped with practical functions for the management. With the further verification and improvement of each function, there are prospects for this software to be utilized as a management tool in power plants.


Author(s):  
Eiji Murakami ◽  
Masamitsu Hashimoto ◽  
Seiji Kikuhara

This paper deals with a simplified method for approximately predicting creep void growth in heat-affected zone (HAZ) of ASME grade 122 (11Cr-2W-0.4Mo-Cu-Nb-V) steel weldments. Authors have proposed a simplified prediction method based on the relationship between creep void density increasing rate and multiaxial stress state. This method has been applied to prediction of creep void growth behavior for grade 91 (9Cr-1Mo-Nb-V) tubular specimens with longitudinal weldments. In this study, the method has been also applied to grade 122 steel to clarify the applicability of the method. Internal pressure creep tests of grade 122 tubular specimens with longitudinal weldments subjected to several internal pressures have been conducted to reveal creep void growth behavior in HAZ. In addition, finite element creep analyses for the specimens at different creep strain rates in base metal, weld metal and HAZ have been carried out to investigate distribution of stresses and stress triaxiality factor in HAZ. A comparison between stress distributions and creep void distributions revealed that stress triaxiality factor affects growth behavior of creep voids. From the result, the relationship between creep void density increasing rate and the parameter as a function of principal stress and triaxiality factor was established. It was found that the slope of this relationship for 122 steel has a tendency to be slightly small compared with grade 91 steel. To demonstrate the applicability of the proposed simplified prediction method, the method was applied to the internal pressure creep test specimens at different experimental conditions. As a result, the predicted void distribution and void density increasing rates for grade 122 steel were in good agreement with the experimental results.


Author(s):  
Huaixiang Cao ◽  
Hao Zhang ◽  
Xingqi Qiu

Low-carbon steel Q235B was widely used in low or middle pressure equipments, which were not only withstanding the corrosive effect of the environment or medium, but also the high stress in service processes. In this paper, acetic acid accelerated corrosion test of low-carbon steel Q235B under the action of various stress levels was conducted, and its pitting corrosion behavior was studied by corrosion morphology, pitting corrosion parameters, scanning electron microscope (SEM) and energy disperse spectroscopy (EDS). The results showed that, the degree of pitting corrosion of low carbon steel Q235B with stress was more serious than that of non-stress. And the corrosion started from grain boundary, which was corroded before grain itself, and then grains fell off or dissolved. Furthermore, it would have the tendency of deep hole corrosion with stress, which was more of a threat to the structural safety of pressure vessels.


Author(s):  
Tao Chen ◽  
Xuedong Chen ◽  
Juan Ye ◽  
Xiyun Hao

Centrifugal cast 25Cr35Ni-Nb alloy furnace tubes with different contents of S are selected to investigate effects of S addition on creep and fracture behavior. Rupture tests in air at 1100 °C and 17 MPa and slow rate tensile tests at 850 °C showed that the presence of S decreased the creep rupture life and elevated temperature ductility of 25Cr35Ni-Nb alloy obviously. Scanning electron micrographs (SEM) of the fracture and energy dispersive X-ray spectroscopy (EDS) analysis results indicated that S was the important element to control creep rupture life and elevated temperature ductility. S segregated to grain boundaries at elevated temperatures, blocky fine sulfide particles with smooth surface distribute on the grain boundaries. The presence of sulfides became effective nucleation sites for intergranular creep cavities. Micro cracks occurred by linking up cavities at elevated temperatures due to local stress concentration. Eventually, early failure happened.


Author(s):  
Yevgen Gorash ◽  
Haofeng Chen

This paper presents parametric studies on creep-fatigue endurance of the steel AISI type 316N(L) weldments defined as types 1, 2 and 3 according to R5 Vol. 2/3 Procedure classification at 550°C. The study is implemented using the Linear Matching Method (LMM) and based upon previously developed creep-fatigue evaluation procedure considering time fraction rule. Several geometrical configurations of weldments with individual parameter sets, representing different fabrication cases, are developed. For each of configurations, the total number of cycles to failure N* in creep-fatigue conditions is assessed numerically for different loading cases. The obtained set of N* is extrapolated by the analytic function dependent on normalised bending moment M̃, dwell period Δt and geometrical parameters. Proposed function for N* shows good agreement with numerical results obtained by the LMM. Therefore, it is used for the identification of Fatigue Strength Reduction Factors (FSRFs) intended for design purposes and dependent on proposed variable parameters.


Author(s):  
Masayoshi Tateno ◽  
Eiichiro Yokoi

Many engineering structures applied for generating energy are said to have been requiring high strength under high temperature conditions. Fine ceramic is expected to be useful in structural applications in various industries by joining to metals. Ceramic can be used in structural parts for engineering where resistance to high temperature and/or high strength are required from the viewpoint of the optimum structural design. Use of ceramic for engineering structures by joining to metal generates a bonded interface between the ceramic and metal.


Sign in / Sign up

Export Citation Format

Share Document