The Dependence of Gibbs Energy of Formation of Niobium Mononitride on its Composition and Temperature in the Range of 1773-2023 K

2018 ◽  
Vol 284 ◽  
pp. 139-145
Author(s):  
V.M. Zhikharev ◽  
M.S. Pavlovskaya

The article demonstrates the applicability of the interaction parameter method for describing the thermodynamic properties of non-stoichiometric niobium nitrides at temperatures of 1773 ± 2023 K. The authors obtained the equation of dependence of the nitride dissociation elasticity on its composition and temperature. They derived the expression for calculating Gibbs energy of formation of nitrides with a set composition, including stoichiometric, in the range of 1773 - 2023 K.

Author(s):  
Janiel J. Reed

The NBS Tables of Chemical Thermodynamic Properties is a collection of thermodynamic properties, published in book form, consisting of 103 tables with 14 330 critically evaluated species. The tables were originally published as a series of NBS Technical Notes As a result of this work, the data is now available in a more accessible spreadsheet format. Enthalpy of formation, ΔfH°, Gibbs energy of formation, ΔfG°, entropy, S°, heat capacity at constant pressure, Cp°, all at 298.15 K, and the enthalpy difference, [H°(298) – H°(0)] are provided where known. Within this collection of data, there are no values given for transuranic elements, Np to Lr (Tables 77–87).


2015 ◽  
Vol 87 (5) ◽  
pp. 461-476 ◽  
Author(s):  
Heinz Gamsjäger ◽  
Masao Morishita

AbstractStandard molar quantities of molybdate ion entropy, $S_{\rm{m}}^0,$ enthalpy of formation, ${\Delta _{\rm{f}}}H_m^{\rm{o}},$ and Gibbs energy of formation, ${\Delta _{\rm{f}}}G_{\rm{m}}^{\rm{o}},$ are key data for the thermodynamic properties of molybdenum compounds and complexes, which are at present investigated by an OECD NEA review project. The most reliable method to determine ${\Delta _{\rm{f}}}H_{\rm{m}}^{\rm{o}}$ of molybdate ion and alkali molybdates directly consists in measuring calorimetrically the enthalpy of dissolution of crystallized molybdenum trioxide and anhydrous alkali molybdates in corresponding aqueous alkali metal hydroxide solutions. Solubility equilibria of sparingly soluble alkaline earth molybdates and silver molybdate lead to trustworthy data for ${\Delta _{\rm{f}}}G_{\rm{m}}^{\rm{o}}$ of molybdate ion. Thereby the Gibbs energies of the metal molybdates and the corresponding metal ions are combined with the Gibbs energies of dissolution. As reliable values are available for ${\Delta _{\rm{f}}}G_{\rm{m}}^{\rm{o}}$ of the relevant metal ions the problem reduces to select the best values of solubility constants and ${\Delta _{\rm{f}}}G_{\rm{m}}^{\rm{o}}$ of alkaline earth molybdates and silver molybdate. There are two independent possibilities to achieve the latter task. (1) ${\Delta _{\rm{f}}}H_{\rm{m}}^{\rm{o}}$ for alkaline earth molybdates and silver molybdate have been determined by solution calorimetry. Entropy data of molybdenum have been compiled and evaluated recently. CODATA key values are available for $S_{\rm{m}}^{\rm{o}}$ of the other elements involved. Whereas $S_{\rm{m}}^{\rm{o}}({\rm{CaMo}}{{\rm{O}}_4},{\rm{ cr}})$ is well known since decades, low-temperature heat capacity measurements had to be performed recently, but now reliable values for $S_{\rm{m}}^{\rm{o}}$ of Ag2MoO4(cr), BaMoO4(cr) and SrMoO4(cr) are available. (2) ${\Delta _{\rm{f}}}H_{\rm{m}}^{\rm{o}}({\rm{BaMo}}{{\rm{O}}_4},{\rm{ cr}}),$ for example, can be obtained from high temperature equilibria also, but the result is less accurate than that of the first method. Once Gibbs energy of formation, ${\Delta _{\rm{f}}}G_{\rm{m}}^{\rm{o}},$ and enthalpy of formation, ${\Delta _{\rm{f}}}H_{\rm{m}}^{\rm{o}},$ of molybdate ion are known its standard entropy, $S_{\rm{m}}^{\rm{o}},$ can be calculated.


RSC Advances ◽  
2015 ◽  
Vol 5 (120) ◽  
pp. 98910-98914 ◽  
Author(s):  
Aparna Banerjee ◽  
A. R. Joshi

The Gibbs energy of formation of Ho2Ru2O7(s) has been determined using a galvanic cell and by employing an oxide ion conducting electrolyte.


2019 ◽  
Vol 64 (12) ◽  
pp. 1274-1280
Author(s):  
L. P. Ogorodova ◽  
Yu. D. Gritsenko ◽  
M. F. Vigasina ◽  
A. Yu. Bychkov ◽  
D. A. Ksenofontov ◽  
...  

A thermochemical study of natural calcium and magnesium orthosilicate ─ monticellite (Ca1.00Mg0.95)[SiO4] (Khabarovsk Territory, Russia) was carried out on the Tian-Calvet microcalorimeter. The enthalpy of formation from the elements fHоel(298.15 K) = -2238.4 4.5 kJ / mol was determined by the method of high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of the theoretical composition of CaMg[SiO4] are calculated: fH0el(298.15 K) = -2248.4 4.5 kJ/mol and fG0el(298.15 K) = -2130.5 4.5 kJ/mol.


2001 ◽  
Vol 295 (2-3) ◽  
pp. 221-227 ◽  
Author(s):  
R Vidhya ◽  
M.P Antony ◽  
P.R Vasudeva Rao ◽  
B Viswanathan

2008 ◽  
Vol 56 (17) ◽  
pp. 4798-4803 ◽  
Author(s):  
K. Thomas Jacob ◽  
Chander Shekhar ◽  
Xiaogan Li ◽  
Girish M. Kale

2019 ◽  
Vol 678 ◽  
pp. 178299
Author(s):  
A.V. Meera ◽  
P.R. Reshmi ◽  
Rajesh Ganesan ◽  
T. Gnanasekaran

Sign in / Sign up

Export Citation Format

Share Document