Design of a Multivariable Helicopter Flight Control System for Handling Qualities Enhancement

1990 ◽  
Vol 35 (4) ◽  
pp. 23-30 ◽  
Author(s):  
William L. Garrard ◽  
Bradley S. Liebst
2000 ◽  
Vol 6 (6) ◽  
pp. 553-566 ◽  
Author(s):  
Ian Postlethwaite ◽  
Ioannis K. Konstantopoulos ◽  
Xiao-Dong Sun ◽  
Daniel J. Walker ◽  
Adrian G. Alford

10.14311/748 ◽  
2005 ◽  
Vol 45 (4) ◽  
Author(s):  
D. J. McGeoch ◽  
E. W. McGookin ◽  
S. S. Houston

This paper presents an investigation into the design of a flight control system, using a decoupled non-linear sliding mode control structure, designed using a linearised, 9th order representation of the dynamics of a PUMA helicopter in hover. The controllers are then tested upon a higher order, non-linear helicopter model, called RASCAL. This design approach is used for attitude command flight control implementation and the control performance is assessed in the terms of handling qualities through the Aeronautical Design Standards for Rotorcraft (ADS-33). In this context a linearised approximation of the helicopter system is used to design an SMC control scheme. These controllers have been found to yield a system that satisfies the Level 1 handling qualities set out by ADS-33. 


2009 ◽  
Vol 147-149 ◽  
pp. 231-236 ◽  
Author(s):  
Tomasz Rogalski ◽  
Andrzej Tomczyk ◽  
Grzegorz Kopecki

At the Department of Avionics and Control Systems problems of aeronautical control systems have been dealt with for years. Several different kinds of aeronautical control systems have been designed, prototyped and tested. These control systems are intended for general aviation aircraft and unmanned aircraft. During all research projects computer simulations and laboratory tests were made. However, since in some cases such tests were insufficient, in-flight tests were conducted leading to a series of reliable results. The in-flight tests were made with the use of M-20 Mewa aircraft (autopilot for a GA aircraft) and PZL-110 Koliber aircraft (control system for UAV and indirect flight control system for a GA aircraft). Nevertheless, in-flight testing is very expensive and problematic. To avoid some problems appearing during in-flight tests and their preparation, a simulator – which is normally used for professional pilot training – can be used. The Aviation Training Center of the Rzeszów University of Technology possesses the ALSIM AL-200 MCC flight simulator. We have started preparing this simulator for the research. It is possible to control the simulated aircraft with the use of an external control system. The solution proposed enables testing the aircraft control algorithms, indirect control laws (e.g. control laws modifying handling qualities), as well as testing and assessment of the students’ pilotage skills. Moreover, the solution makes it possible to conduct tests connected with aircraft control, crew management, crew cooperation and flight safety. The simulator allows us to test dangerous situations, which – because of safety reasons – is impossible during in-flight testing. This paper presents modifications to the simulator’s hardware and additional software, which enable the described research.


2001 ◽  
Vol 105 (1051) ◽  
pp. 543-549 ◽  
Author(s):  
C. Fielding

The design of an advanced flight control system (FCS) is a technically challenging task for which a range of engineering disciplines have to align their skills and efforts in order to achieve a successful system design. This paper presents an overview of some of the factors which need to be considered and is intended to serve as an introduction to this stimulating subject. Specific aspects covered are: flight dynamics and handling qualities, mechanical and fly-by-wire systems, control laws and air data systems, stores carriage, actuation systems, flight control computer implementation, flexible airframe dynamics, and ground and flight testing. The flight control system challenges and expected future developments are reviewed and a comprehensive set of references is provided for further reading.


2012 ◽  
Vol 468-471 ◽  
pp. 529-533 ◽  
Author(s):  
Fu Yang Chen ◽  
Wen Li Luan ◽  
Rui Hou

In this paper, an adaptive control scheme is proposed for the uncertain flight control system of the helicopter with fault in vertical flight. The controller is designed using sliding mode theory and adaptive technology. In the controller, the nonlinear function is brought in, which can enlarge the small errors, and saturate the large errors. And it can make sure the good transient performances and stability of the helicopter flight control system. Finally, the simulation results of the nonlinear helicopter flight system illustrate the effectiveness and feasibility of the proposed scheme in the paper.


Sign in / Sign up

Export Citation Format

Share Document