The Aeronautical Journal
Latest Publications


TOTAL DOCUMENTS

3414
(FIVE YEARS 440)

H-INDEX

32
(FIVE YEARS 4)

Published By Cambridge University Press

2059-6464, 0001-9240

2022 ◽  
pp. 1-24
Author(s):  
G. Corrado ◽  
A. Arteiro ◽  
A.T. Marques ◽  
J. Reinoso ◽  
F. Daoud ◽  
...  

Abstract This paper presents the extension and validation of omni-failure envelopes for first-ply failure (FPF) and last-ply failure (LPF) analysis of advanced composite materials under general three-dimensional (3D) stress states. Phenomenological failure criteria based on invariant structural tensors are implemented to address failure events in multidirectional laminates using the “omni strain failure envelope” concept. This concept enables the generation of safe predictions of FPF and LPF of composite laminates, providing reliable and fast laminate failure indications that can be particularly useful as a design tool for conceptual and preliminary design of composite structures. The proposed extended omni strain failure envelopes allow not only identification of the controlling plies for FPF and LPF, but also of the controlling failure modes. FPF/LPF surfaces for general 3D stress states can be obtained using only the material properties extracted from the unidirectional (UD) material, and can predict membrane FPF or LPF of any laminate independently of lay-up, while considering the effect of out-of-plane stresses. The predictions of the LPF envelopes and surfaces are compared with experimental data on multidirectional laminates from the first and second World-Wide Failure Exercise (WWFE), showing a satisfactory agreement and validating the conservative character of omni-failure envelopes also in the presence of high levels of triaxiality.


2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


2022 ◽  
pp. 1-20
Author(s):  
D. Xu ◽  
G. Chen

Abstract In this paper, we expolore Multi-Agent Reinforcement Learning (MARL) methods for unmanned aerial vehicle (UAV) cluster. Considering that the current UAV cluster is still in the program control stage, the fully autonomous and intelligent cooperative combat has not been realised. In order to realise the autonomous planning of the UAV cluster according to the changing environment and cooperate with each other to complete the combat goal, we propose a new MARL framework. It adopts the policy of centralised training with decentralised execution, and uses Actor-Critic network to select the execution action and then to make the corresponding evaluation. The new algorithm makes three key improvements on the basis of Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. The first is to improve learning framework; it makes the calculated Q value more accurate. The second is to add collision avoidance setting, which can increase the operational safety factor. And the third is to adjust reward mechanism; it can effectively improve the cluster’s cooperative ability. Then the improved MADDPG algorithm is tested by performing two conventional combat missions. The simulation results show that the learning efficiency is obviously improved, and the operational safety factor is further increased compared with the previous algorithm.


2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


2022 ◽  
pp. 1-24
Author(s):  
Z.A. Rana ◽  
F. Mauret ◽  
J.M. Sanchez-Gil ◽  
K. Zeng ◽  
Z. Hou ◽  
...  

Abstract This article focuses on the aerodynamic design of a morphing aerofoil at cruise conditions using computational fluid dynamics (CFD). The morphing aerofoil has been analysed at a Mach number of 0.8 and Reynolds number of $3 \times 10^{6}$ , which represents the transonic cruise speed of a commercial aircraft. In this research, the NACA0012 aerofoil has been identified as the baseline aerofoil where the analysis has been performed under steady conditions at a range of angles of attack between $0^{^{\kern1pt\circ}}$ and $3.86^{^{\kern1pt\circ}}$ . The performance of the baseline case has been compared to the morphing aerofoil for different morphing deflections ( $w_{te}/c = [0.005 - 0.1]$ ) and start of the morphing locations ( $x_{s}/c = [0.65 - 0.80]$ ). Further, the location of the shock wave on the upper surface has also been investigated due to concerns about the structural integrity of the morphing part of the aerofoil. Based upon this investigation, a most favourable morphed geometry has been presented that offers both, a significant increase in the lift-to-drag ratio against its un-morphed counterpart and has a shock location upstream of the start of the morphing part.


2021 ◽  
Vol 126 (1295) ◽  
pp. 1-1
Author(s):  
Holger Babinsky

2021 ◽  
pp. 1-17
Author(s):  
U. Kilic ◽  
G. Unal

Abstract The aim morphing of this study is to detect and reconstruct a fault in angle-of-attack sensor and pitot probes that are components in commercial aircrafts, without false alarm and no need for additional measurements. Real flight data collected from a local airline was used to design the relevant system. Correlation analysis was performed to select the data related to the angle-of-attack and airspeed. Fault detection and reconstruction were carried out by using Adaptive Neural Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN), which are machine-learning methods. No false alarm was detected when the fault test following the fault modeling was carried out at 0–1 s range by filtering the residual signal. When the fault was detected, fault reconstruction process was initiated so that system output could be achieved according to estimated sensor data. Instead of using the methods based on hardware redundancy, we designed a new system within the scope of this study.


2021 ◽  
pp. 1-21
Author(s):  
M. Bahr ◽  
M. McKay ◽  
R. Niemiec ◽  
F. Gandhi

Abstract Optimisation-based control design techniques are applied to multicopters with variable-RPM rotors. The handling qualities and motor current requirements of a quadcopter, hexacopter and octocopter with equal gross weights (5,360N) and total disk areas (producing a 287N/m $^2$ disk loading) are compared in hover. For axes that rely on the rotor thrust (all except yaw), the increased inertia of the larger rotors on the quadcopter increase the current requirement, relative to vehicles with fewer, smaller rotors. Both the quadcopter and hexacopter have maximum current margin requirements (relative to hover) during a step command in longitudinal velocity. In yaw, rotor inertia is irrelevant, as the reaction torque of the motor is the same whether the rotor is accelerating or overcoming drag. This, combined with the octocopter’s greater inertia as well as the fact that it requires 30% less current to drive its motors in hover, results in the octocopter requiring the greatest current margin, relative to hover conditions. To meet handling qualities requirements, the total weight of the motors of the octocopter and hexacopter is comparable at 13.5% weight fraction, but the quadcopter’s motors are heavier, requiring 16% weight fraction. If the longitudinal and lateral axes were flown in ACAH mode, rather than TRC mode, the total motor weight of all configurations would be nearly identical, requiring about 13.5% weight fraction for motors (compared to 7–9% weight fraction from hover torque requirements).


Sign in / Sign up

Export Citation Format

Share Document