scholarly journals The stationary waiting time and other variables in single-server queues with specialities at the beginning of a busy period

1973 ◽  
Vol 13 (4) ◽  
pp. 465-479
Author(s):  
G. Siegel
1962 ◽  
Vol 2 (4) ◽  
pp. 499-507 ◽  
Author(s):  
G. F. Yeo

SummaryThis paper considers a generalisation of the queueing system M/G/I, where customers arriving at empty and non-empty queues have different service time distributions. The characteristic function (c.f.) of the stationary waiting time distribution and the probability generating function (p.g.f.) of the queue size are obtained. The busy period distribution is found; the results are generalised to an Erlangian inter-arrival distribution; the time-dependent problem is considered, and finally a special case of server absenteeism is discussed.


1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.


1991 ◽  
Vol 28 (02) ◽  
pp. 433-445 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


1967 ◽  
Vol 4 (02) ◽  
pp. 365-379 ◽  
Author(s):  
Erhan Çinlar

A queueing system with a single server is considered. There are a finite number of types of customers, and the types of successive arrivals form a Markov chain. Further, the nth interarrival time has a distribution function which may depend on the types of the nth and the n–1th arrivals. The queue size, waiting time, and busy period processes are investigated. Both transient and limiting results are given.


1978 ◽  
Vol 15 (01) ◽  
pp. 162-170 ◽  
Author(s):  
J. Keilson

For a single-server system having several Poisson streams of customers with exponentially distributed service times, busy period densities, waiting time densities, and idle state probabilities are completely monotone. The exponential spectra for such densities are of importance for understanding the transient behavior of such systems. Algorithms are given for the computation of such spectra. Applications to heavy traffic situations and priority systems are also discussed.


Sign in / Sign up

Export Citation Format

Share Document