Time Performance
Recently Published Documents





2021 ◽  
Vol 11 (21) ◽  
pp. 9887
Feng Gao ◽  
Qiuxia Hu ◽  
Jie Ma ◽  
Xiangyu Han

Motion planning by considering it as an optimal problem is an effective and widely applicable method. Its comprehensive performance greatly depends on the vehicle dynamics model, which is highly coupled and nonlinear, especially under the dynamical scenarios and causes much more consumption of computation resources for the numerical optimization. To increase the real time performance of the motion planner designed by nonlinear model predictive control (NMPC), a unified and simplified vehicle dynamics model (SDM) is presented to make a balance between the accuracy and complexity for dynamical driving scenarios. Based on the statistical analysis results of naturalistic driving conditions, a unified nonlinear vehicle dynamics model is set up, which considers the tyre cornering characteristic and is also applicable to conditions with large turning angle. After the validation of this coupled dynamics model (CDM) by comparisons with other widely used models under a variety of conditions, the coupling effect is analyzed according to the transfer functions, which are obtained by linearizing CDM at equilibrium points. Furthermore, SDM is derived by ignoring the weak part of the coupling effect. The accuracy of SDM is validated by several comparative studies with other models and it is further applied to design a motion planner by NMPC to validate its contribution on the performance improvement under dynamical driving conditions.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6914
Niko Karhula ◽  
Seppo Sierla ◽  
Valeriy Vyatkin

A significant body of research has emerged for adapting diverse intelligent distributed energy resources to provide primary frequency reserves (PFR). However, such works are usually vague about the technical specifications for PFR. Industrial practitioners designing systems for PFR markets must pre-qualify their PFR resources against the specifications of the market operator, which is usually a transmission system operator (TSO) or independent system operator (ISO). TSO and ISO requirements for PFR have been underspecified with respect to real-time performance, but as fossil-fuel based PFR is being replaced by various distributed energy resources, these requirements are being tightened. The TSOs of Denmark, Finland, Norway, and Sweden have recently released a joint pilot phase specification with novel requirements on the dynamic performance of PFR resources. This paper presents an automated procedure for performing the pre-qualification procedure against this specification. The procedure is generic and has been demonstrated with a testbed of light emitting diode (LED) lights. The implications of low bandwidth Internet of Things communications, as well as the need to avoid abrupt control actions that irritate human users, have been investigated in the automated procedure.

Dongwook Shin ◽  
Mark Broadie ◽  
Assaf Zeevi

Given a finite number of stochastic systems, the goal of our problem is to dynamically allocate a finite sampling budget to maximize the probability of selecting the “best” system. Systems are encoded with the probability distributions that govern sample observations, which are unknown and only assumed to belong to a broad family of distributions that need not admit any parametric representation. The best system is defined as the one with the highest quantile value. The objective of maximizing the probability of selecting this best system is not analytically tractable. In lieu of that, we use the rate function for the probability of error relying on large deviations theory. Our point of departure is an algorithm that naively combines sequential estimation and myopic optimization. This algorithm is shown to be asymptotically optimal; however, it exhibits poor finite-time performance and does not lead itself to implementation in settings with a large number of systems. To address this, we propose practically implementable variants that retain the asymptotic performance of the former while dramatically improving its finite-time performance.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Lingjing Chen

Facial features are an effective representation of students’ fatigue state, and the eye is more closely related to fatigue state. However, there are three main problems in the existing research: (1) the positioning of the eye is vulnerable to the external environment; (2) the ocular features need to be artificially defined and extracted for state judgment; and (3) although the student fatigue state detection based on convolutional neural network has a high accuracy, it is difficult to apply in the terminal side in real time. In view of the above problems, a method of student fatigue state judgment is proposed which combines face detection and lightweight depth learning technology. First, the AdaBoost algorithm is used to detect the human face from the input images, and the images marked with human face regions are saved to the local folder, which is used as the sample dataset of the open-close judgment part. Second, a novel reconstructed pyramid structure is proposed to improve the MobileNetV2-SSD to improve the accuracy of target detection. Then, the feature enhancement suppression mechanism based on SE-Net module is introduced to effectively improve the feature expression ability. The final experimental results show that, compared with the current commonly used target detection network, the proposed method has better classification ability for eye state and is improved in real-time performance and accuracy.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Fang Wang ◽  
Jichuan Xing ◽  
Jinxin Li ◽  
Feng Zhao ◽  
Shufeng Zhang

With the development of technology, the total extent of global pipeline transportation is also increased. However, the traditional long-distance optical fiber prewarning system has poor real-time performance and high false alarm rate when recognizing events threatening pipeline safety. The same vibration signal would vary greatly when collected in different soil environments and this problem would reduce the signal recognition accuracy of the prewarning system. In this paper, we studied this effect theoretically and analyzed soil vibration signals under different soil conditions. Then we studied the signal acquisition problem of long-distance gas and oil pipeline prewarning system in real soil environment. Ultimately, an improved high-intelligence method was proposed for optimization. This method is based on the real application environment, which is more suitable for the recognition of optical fiber vibration signals. Through experiments, the method yielded high recognition accuracy of above 95%. The results indicate that the method can significantly improve signal acquisition and recognition and has good adaptability and real-time performance in the real soil environment.

Shiying Dong ◽  
Bing Zhao Gao ◽  
Hong Chen ◽  
Yanjun Huang ◽  
Qifang Liu

Abstract This paper presents a fast numerical algorithm for velocity optimization based on the Pontryagin' minimum principle (PMP). Considering the difficulties in the application of the PMP when state constraints exist, the penalty function approach is proposed to convert the state-constrained problem into an unconstrained one. Then this paper proposes an iterative numerical algorithm by using the explicit solution to find the optimal solution. The proposed numerical algorithm is applied to the velocity trajectory optimization for energy-efficient control of connected and automated vehicles (CAVs). Simulation results indicate that the algorithm can generate the optimal inputs in milliseconds, and a significant improvement in computational efficiency compared with traditional methods (a few seconds). Hardware in the Loop test for experimental validation is given to further verify the real-time performance of the proposed algorithm.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6826
Baohua Yang ◽  
Yue Zhu ◽  
Shuaijun Zhou

The extraction of wheat lodging is of great significance to post-disaster agricultural production management, disaster assessment and insurance subsidies. At present, the recognition of lodging wheat in the actual complex field environment still has low accuracy and poor real-time performance. To overcome this gap, first, four-channel fusion images, including RGB and DSM (digital surface model), as well as RGB and ExG (excess green), were constructed based on the RGB image acquired from unmanned aerial vehicle (UAV). Second, a Mobile U-Net model that combined a lightweight neural network with a depthwise separable convolution and U-Net model was proposed. Finally, three data sets (RGB, RGB + DSM and RGB + ExG) were used to train, verify, test and evaluate the proposed model. The results of the experiment showed that the overall accuracy of lodging recognition based on RGB + DSM reached 88.99%, which is 11.8% higher than that of original RGB and 6.2% higher than that of RGB + ExG. In addition, our proposed model was superior to typical deep learning frameworks in terms of model parameters, processing speed and segmentation accuracy. The optimized Mobile U-Net model reached 9.49 million parameters, which was 27.3% and 33.3% faster than the FCN and U-Net models, respectively. Furthermore, for RGB + DSM wheat lodging extraction, the overall accuracy of Mobile U-Net was improved by 24.3% and 15.3% compared with FCN and U-Net, respectively. Therefore, the Mobile U-Net model using RGB + DSM could extract wheat lodging with higher accuracy, fewer parameters and stronger robustness.

2021 ◽  
Vol 11 (20) ◽  
pp. 9540
Baifan Chen ◽  
Xiaoting Song ◽  
Hongyu Shen ◽  
Tao Lu

A major challenge in place recognition is to be robust against viewpoint changes and appearance changes caused by self and environmental variations. Humans achieve this by recognizing objects and their relationships in the scene under different conditions. Inspired by this, we propose a hierarchical visual place recognition pipeline based on semantic-aggregation and scene understanding for the images. The pipeline contains coarse matching and fine matching. Semantic-aggregation happens in residual aggregation of visual information and semantic information in coarse matching, and semantic association of semantic edges in fine matching. Through the above two processes, we realized a robust coarse-to-fine pipeline of visual place recognition across viewpoint and condition variations. Experimental results on the benchmark datasets show that our method performs better than several state-of-the-art methods, improving the robustness against severe viewpoint changes and appearance changes while maintaining good matching-time performance. Moreover, we prove that it is possible for a computer to realize place recognition based on scene understanding.

2021 ◽  
Vol 11 (20) ◽  
pp. 9585
Honglin Lei ◽  
Yanqi Pan ◽  
Tao Yu ◽  
Zuoming Fu ◽  
Chongan Zhang ◽  

Retrograde intrarenal surgery (RIRS) is a minimally invasive endoscopic procedure for the treatment of kidney stones. Traditionally, RIRS is usually performed by reconstructing a 3D model of the kidney from preoperative CT images in order to locate the kidney stones; then, the surgeon finds and removes the stones with experience in endoscopic video. However, due to the many branches within the kidney, it can be difficult to relocate each lesion and to ensure that all branches are searched, which may result in the misdiagnosis of some kidney stones. To avoid this situation, we propose a convolutional neural network (CNN)-based method for matching preoperative CT images and intraoperative videos for the navigation of ureteroscopic procedures. First, a pair of synthetic images and depth maps reflecting preoperative information are obtained from a 3D model of the kidney. Then, a style transfer network is introduced to transfer the ureteroscopic images to the synthetic images, which can generate the associated depth maps. Finally, the fusion and matching of depth maps of preoperative images and intraoperative video images are realized based on semantic features. Compared with the traditional CT-video matching method, our method achieved a five times improvement in time performance and a 26% improvement in the top 10 accuracy.

Can Xu ◽  
Wanzhong Zhao ◽  
Jingqiang Liu ◽  
Feng Chen

To improve the agility and efficiency of the highway decision-making system and overcome the local optimal dilemma of the existing safety field, this paper builds an improved safety field to reflect the advantage of the reachable states and the learning process is further employed to make the decision long-term optimal. Firstly, the improved safety field is prepared by the kinematic model-based prediction of surrounding vehicles and the boundary is determined elaborately to ensure real-time performance. Then, the field is constructed by three individual fields. One is the kinematic field, which is built based the safe-distance model to measure the colliding risk of both moving or no-moving objects accurately. Another is the road field that reflects the lane-marker constraint. The last is the efficiency field, which is introduced creatively to improve efficiency. Furthermore, the learning algorithm is adopted to learn the long-term optimal state-action sequence in the safety field. Finally, the simulations are conducted in Prescan platform to validate the feasibility of the improved safety field in complex scenarios. The results show that the proposed decision algorithm can always drive autonomous vehicle to the state with a long-term optimal payoff and can improve the overall performance compared to the existing pure safety field and the interaction-aware method.

Sign in / Sign up

Export Citation Format

Share Document