scholarly journals Compound Poisson approximation for extremes of moving minima in arrays of independent random variables

1998 ◽  
Vol 25 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Jadwiga Dudkiewicz
2000 ◽  
Vol 9 (6) ◽  
pp. 529-548 ◽  
Author(s):  
MARIANNE MÅNSSON

Consider sequences {Xi}mi=1 and {Yj}nj=1 of independent random variables, taking values in a finite alphabet, and assume that the variables X1, X2, … and Y1, Y2, … follow the distributions μ and v, respectively. Two variables Xi and Yj are said to match if Xi = Yj. Let the number of matching subsequences of length k between the two sequences, when r, 0 [les ] r < k, mismatches are allowed, be denoted by W.In this paper we use Stein's method to bound the total variation distance between the distribution of W and a suitably chosen compound Poisson distribution. To derive rates of convergence, the case where E[W] stays bounded away from infinity, and the case where E[W] → ∞ as m, n → ∞, have to be treated separately. Under the assumption that ln n/ln(mn) → ρ ∈ (0, 1), we give conditions on the rate at which k → ∞, and on the distributions μ and v, for which the variation distance tends to zero.


2001 ◽  
Vol 38 (2) ◽  
pp. 449-463 ◽  
Author(s):  
Ourania Chryssaphinou ◽  
Eutichia Vaggelatou

Consider a sequence X1,…,Xn of independent random variables with the same continuous distribution and the event Xi-r+1 < ⋯ < Xi of the appearance of an increasing sequence with length r, for i=r,…,n. Denote by W the number of overlapping appearances of the above event in the sequence of n trials. In this work, we derive bounds for the total variation and Kolmogorov distances between the distribution of W and a suitable compound Poisson distribution. Via these bounds, an associated theorem concerning the limit distribution of W is obtained. Moreover, using the previous results we study the asymptotic behaviour of the length of the longest increasing sequence. Finally, we suggest a non-parametric test based on W for checking randomness against local increasing trend.


1999 ◽  
Vol 8 (4) ◽  
pp. 335-346 ◽  
Author(s):  
PETER EICHELSBACHER ◽  
MAŁGORZATA ROOS

In the present paper we consider compound Poisson approximation by Stein's method for dissociated random variables. We present some applications to problems in system reliability. In particular, our examples have the structure of an incomplete U-statistics. We mainly apply techniques from Barbour and Utev, who gave new bounds for the solutions of the Stein equation in compound Poisson approximation in two recent papers.


2001 ◽  
Vol 38 (02) ◽  
pp. 449-463
Author(s):  
Ourania Chryssaphinou ◽  
Eutichia Vaggelatou

Consider a sequence X 1,…,X n of independent random variables with the same continuous distribution and the event X i-r+1 &lt; ⋯ &lt; X i of the appearance of an increasing sequence with length r, for i=r,…,n. Denote by W the number of overlapping appearances of the above event in the sequence of n trials. In this work, we derive bounds for the total variation and Kolmogorov distances between the distribution of W and a suitable compound Poisson distribution. Via these bounds, an associated theorem concerning the limit distribution of W is obtained. Moreover, using the previous results we study the asymptotic behaviour of the length of the longest increasing sequence. Finally, we suggest a non-parametric test based on W for checking randomness against local increasing trend.


1988 ◽  
Vol 18 (2) ◽  
pp. 169-174 ◽  
Author(s):  
R. Kaas ◽  
A. E. van Heerwaarden ◽  
M. J. Goovaerts

AbstractThis article studies random variables whose stop-loss rank falls between a certain risk (assumed to be integer-valued and non-negative, but not necessarily of life-insurance type) and the compound Poisson approximation to this risk. They consist of a compound Poisson part to which some independent Bernoulli-type variables are added.Replacing each term in an individual model with such a random variable leads to an approximating model for the total claims on a portfolio of contracts that is computationally almost as attractive as the compound Poisson approximation used in the standard collective model. The resulting stop-loss premiums are much closer to the real values.


1990 ◽  
Vol 22 (2) ◽  
pp. 350-374 ◽  
Author(s):  
S. T. Rachev ◽  
L. Rüschendorf

The approximation of sums of independent random variables by compound Poisson distributions with respect to stop-loss distances is investigated. These distances are motivated by risk-theoretic considerations. In contrast to the usual construction of approximating compound Poisson distributions, the method suggested in this paper is to fit several moments. For two moments, this can be achieved by scale transformations. It is shown that the new approximations are more stable and improve the usual approximations by accompanying laws in examples where the probability 1 – pi that the ith summand is zero is not too large.


Sign in / Sign up

Export Citation Format

Share Document