scholarly journals Solutions of a functional equation in a special class of functions

1972 ◽  
Vol 26 (3) ◽  
pp. 287-293 ◽  
Author(s):  
M. Kuczma ◽  
J. Matkowski
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Davood Afraz ◽  
Rahmatollah Lashkaripour ◽  
Mojtaba Bakherad

1973 ◽  
Vol 10 (1) ◽  
pp. 198-205 ◽  
Author(s):  
R. A. Doney

If Z(t) denotes the population size in a Bellman-Harris age-dependent branching process such that a non-denenerate random variable W, then it is known that E(W) = 1 and that ϕ (u) = E(e–uW) satisfies a well-known integral equation. In this situation Athreya [1] has recently found a NASC for E(W |log W| y) <∞, for γ > 0. This paper generalizes Athreya's results in two directions. Firstly a more general class of branching processes is considered; secondly conditions are found for E(W 1 + βL(W)) < ∞ for 0 β < 1, where L is one of a class of functions of slow variation.


2018 ◽  
Vol 68 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Ahmed Charifi ◽  
Radosław Łukasik ◽  
Driss Zeglami

Abstract We obtain in terms of additive and multi-additive functions the solutions f, h: S → H of the functional equation $$\begin{array}{} \displaystyle \sum\limits_{\lambda \in \Phi }f(x+\lambda y+a_{\lambda })=Nf(x)+h(y),\quad x,y\in S, \end{array} $$ where (S, +) is an abelian monoid, Φ is a finite group of automorphisms of S, N = | Φ | designates the number of its elements, {aλ, λ ∈ Φ} are arbitrary elements of S and (H, +) is an abelian group. In addition, some applications are given. This equation provides a joint generalization of many functional equations such as Cauchy’s, Jensen’s, Łukasik’s, quadratic or Φ-quadratic equations.


1979 ◽  
Vol 26 (1) ◽  
pp. 71-79
Author(s):  
Robert E. Molzon

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Bogdan Batko

We deal with the stability of the exponential Cauchy functional equationF(x+y)=F(x)F(y)in the class of functionsF:G→Lmapping a group (G, +) into a Riesz algebraL. The main aim of this paper is to prove that the exponential Cauchy functional equation is stable in the sense of Hyers-Ulam and is not superstable in the sense of Baker. To prove the stability we use the Yosida Spectral Representation Theorem.


2000 ◽  
Vol 24 (11) ◽  
pp. 721-727 ◽  
Author(s):  
Soon-Mo Jung ◽  
Ki-Suk Lee

A familiar functional equationf(ax+b)=cf(x)will be solved in the class of functionsf:ℝ→ℝ. Applying this result we will investigate the Hyers-Ulam-Rassias stability problem of the generalized additive Cauchy equationf(a1x1+⋯+amxm+x0)=∑i=1mbif(ai1x1+⋯+aimxm)in connection with the question of Rassias and Tabor.


Sign in / Sign up

Export Citation Format

Share Document