cauchy equation
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Acoustics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 717-722
Author(s):  
Oskar Bschorr ◽  
Hans-Joachim Raida

The method used to factorize the longitudinal wave equation has been known for many decades. Using this knowledge, the classical 2nd-order partial differential Equation (PDE) established by Cauchy has been split into two 1st-order PDEs, in alignment with D’Alemberts’s theory, to create forward- and backward-traveling wave results. Therefore, the Cauchy equation has to be regarded as a two-way wave equation, whose inherent directional ambiguity leads to irregular phantom effects in the numerical finite element (FE) and finite difference (FD) calculations. For seismic applications, a huge number of methods have been developed to reduce these disturbances, but none of these attempts have prevailed to date. However, a priori factorization of the longitudinal wave equation for inhomogeneous media eliminates the above-mentioned ambiguity, and the resulting one-way equations provide the definition of the wave propagation direction by the geometric position of the transmitter and receiver.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1180
Author(s):  
Jae-Hyeong Bae ◽  
Won-Gil Park

Symmetry is repetitive self-similarity. We proved the stability problem by replicating the well-known Cauchy equation and the well-known Jensen equation into two variables. In this paper, we proved the Hyers-Ulam stability of the bi-additive functional equation f(x+y,z+w)=f(x,z)+f(y,w) and the bi-Jensen functional equation 4fx+y2,z+w2=f(x,z)+f(x,w)+f(y,z)+f(y,w).


Author(s):  
Harald Fripertinger ◽  
Jens Schwaiger

AbstractIt was proved in Forti and Schwaiger (C R Math Acad Sci Soc R Can 11(6):215–220, 1989), Schwaiger (Aequ Math 35:120–121, 1988) and with different methods in Schwaiger (Developments in functional equations and related topics. Selected papers based on the presentations at the 16th international conference on functional equations and inequalities, ICFEI, Bȩdlewo, Poland, May 17–23, 2015, Springer, Cham, pp 275–295, 2017) that under the assumption that every function defined on suitable abelian semigroups with values in a normed space such that the norm of its Cauchy difference is bounded by a constant (function) is close to some additive function, i.e., the norm of the difference between the given function and that additive function is also bounded by a constant, the normed space must necessarily be complete. By Schwaiger (Ann Math Sil 34:151–163, 2020) this is also true in the non-archimedean case. Here we discuss the situation when the bound is a suitable non-constant function.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 841
Author(s):  
Roman Badora ◽  
Janusz Brzdęk ◽  
Krzysztof Ciepliński

We show how to get new results on Ulam stability of some functional equations using the Banach limit. We do this with the examples of the linear functional equation in single variable and the Cauchy equation.


Author(s):  
Gian Luigi Forti

AbstractIn this paper we deal with the product of two or three Cauchy differences equaled to zero. We show that in the case of two Cauchy differences, the condition of absolute continuity and differentiability of the two functions involved implies that one of them must be linear, i.e., we have a trivial solution. In the case of the product of three Cauchy differences the situation changes drastically: there exists non trivial $${\mathcal {C}}^{\infty }$$ C ∞ solutions, while in the case of real analytic functions we obtain that at least one of the functions involved must be linear. Some open problems are then presented.


2021 ◽  
Vol 15 (1) ◽  
pp. 085-094
Author(s):  
Mariatul Kiftiah ◽  
Yudhi Yudhi ◽  
Alvi Yanitami

Euler-Cauchy equation is the typical example of a linear ordinary differential equation with variable coefficients. In this paper, we apply the alternative method to determine the particular solution of Euler-Cauchy nonhomogenous with polynomial and natural logarithm form. An explicit formula of the particular solution is derived from the use of an upper triangular Toeplitz matrix. The study showed that this method could be finding the particular solution for the Euler-Cauchy equation


2020 ◽  
Vol 34 (1) ◽  
pp. 151-163
Author(s):  
Jens Schwaiger

AbstractIn [12] a close connection between stability results for the Cauchy equation and the completion of a normed space over the rationals endowed with the usual absolute value has been investigated. Here similar results are presented when the valuation of the rationals is a p-adic valuation. Moreover a result by Zygfryd Kominek ([5]) on the stability of the Pexider equation is formulated and proved in the context of Banach spaces over the field of p-adic numbers.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 502
Author(s):  
Laura Manolescu

A symmetric functional equation is one whose form is the same regardless of the order of the arguments. A remarkable example is the Cauchy functional equation: f ( x + y ) = f ( x ) + f ( y ) . Interesting results in the study of the rigidity of quasi-isometries for symmetric spaces were obtained by B. Kleiner and B. Leeb, using the Hyers-Ulam stability of a Cauchy equation. In this paper, some results on the Ulam’s type stability of the Cauchy functional equation are provided by extending the traditional norm estimations to ther measurements called generalized norm of convex type (v-norm) and generalized norm of subadditive type (s-norm).


Author(s):  
Katarzyna Domańska

Abstract L. Losonczi [4] determined local solutions of the generalized Cauchy equation f(F (x, y)) = f(x) + f(y) on components of the definition of a given associative rational function F. The class of the associative rational function was described by A. Chéritat [1] and his work was followed by paper [3] of the author. The aim of the present paper is to describe local solutions of the equation considered for some singular associative rational functions.


Sign in / Sign up

Export Citation Format

Share Document