scholarly journals On finite-difference approximations to steady-state solutions of the Navier-Stokes equations

1968 ◽  
Vol 19 (1) ◽  
pp. 157-169 ◽  
Author(s):  
A. Krzywicki
1973 ◽  
Vol 59 (2) ◽  
pp. 337-368 ◽  
Author(s):  
J. S. Allen

Numerical solutions of finite-difference approximations to the Navier–Stokes equations have been obtained for the axisymmetric motion of a Boussinesq liquid in a rigidly bounded rotating annulus. For most of the cases studied, a temperature difference is maintained between the top and bottom surfaces such that essentially a basic stable density stratification is imposed on the fluid. The side walls are thermally insulated and the motion is driven by a differential rotation of the top surface. Approximate steady-state solutions are obtained for various values of the Rossby number ε and the stratification parameter S = N2/Ω2, where N is the Brunt–Väisälä frequency and Ω is the rotational frequency. The changes in the flow field with the variation of these parameters is studied. Particular attention is given to an investigation of the meridional, or up welling, circulation and its dependence on the stratification parameter. The effects on the flow of different boundary conditions, such as an applied stress driving, specified temperature at the side walls and an applied heat flux at the top and bottom surfaces, are also investigated.


Author(s):  
Dongho Shin ◽  
John C. Strikwerda

AbstractWe consider several methods for solving the linear equations arising from finite difference discretizations of the Stokes equations. The two best methods, one presented here for the first time, apparently, and a second, presented by Bramble and Pasciak, are shown to have computational effort that grows slowly with the number of grid points. The methods work with second-order accurate discretizations. Computational results are shown for both the Stokes equations and incompressible Navier-Stokes equations at low Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document