finite difference approximations
Recently Published Documents


TOTAL DOCUMENTS

329
(FIVE YEARS 32)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dumitru Vieru ◽  
Constantin Fetecau ◽  
Nehad Ali Shah ◽  
Jae Dong Chung

The generalized time-fractional, one-dimensional, nonlinear Burgers equation with time-variable coefficients is numerically investigated. The classical Burgers equation is generalized by considering the generalized Atangana-Baleanu time-fractional derivative. The studied model contains as particular cases the Burgers equation with Atangana-Baleanu, Caputo-Fabrizio, and Caputo time-fractional derivatives. A numerical scheme, based on the finite-difference approximations and some integral representations of the two-parameter Mittag-Leffler functions, has been developed. Numerical solutions of a particular problem with initial and boundary values are determined by employing the proposed method. The numerical results are plotted to compare solutions corresponding to the problems with time-fractional derivatives with different kernels.


Author(s):  
Kedir Aliyi Koroche ◽  
◽  
Geleta Kinkino Mayu ◽  

This paper presents fourth order Adams predictor corrector numerical scheme for solving initial value problem. First, the solution domain is discretized. Then the derivatives in the given initial value problem are replaced by finite difference approximations and the numerical scheme that provides algebraic systems of difference equations is developed. The starting points are obtained by using fourth order Runge-Kutta method and then applying the present method to finding the solution of Initial value problem. To validate the applicability of the method, two model examples are solved for different values of mesh size. The stability and convergence of the present method have been investigated. The numerical results are presented by tables and graphs. The present method helps us to get good results of the solution for small value of mesh size h. The proposed method approximates the exact solution very well. Moreover, the present method improves the findings of some existing numerical methods reported in the literature.


2021 ◽  
Vol 1 (2) ◽  
pp. 30-40
Author(s):  
Kedir Aliyi Koroche ◽  
Geleta Kinkino Mayu

This paper presents fourth order Adams predictor corrector numerical scheme for solving initial value problem. First, the solution domain is discretized. Then the derivatives in the given initial value problem are replaced by finite difference approximations and the numerical scheme that provides algebraic systems of difference equations is developed. The starting points are obtained by using fourth order Runge-Kutta method and then applying the present method to finding the solution of Initial value problem. To validate the applicability of the method, two model examples are solved for different values of mesh size. The stability and convergence of the present method have been investigated. The numerical results are presented by tables and graphs. The present method helps us to get good results of the solution for small value of mesh size h. The proposed method approximates the exact solution very well. Moreover, the present method improves the findings of some existing numerical methods reported in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Adel R. Hadhoud ◽  
H. M. Srivastava ◽  
Abdulqawi A. M. Rageh

AbstractThis paper proposes two numerical approaches for solving the coupled nonlinear time-fractional Burgers’ equations with initial or boundary conditions on the interval $[0, L]$ [ 0 , L ] . The first method is the non-polynomial B-spline method based on L1-approximation and the finite difference approximations for spatial derivatives. The method has been shown to be unconditionally stable by using the Von-Neumann technique. The second method is the shifted Jacobi spectral collocation method based on an operational matrix of fractional derivatives. The proposed algorithms’ main feature is that when solving the original problem it is converted into a nonlinear system of algebraic equations. The efficiency of these methods is demonstrated by applying several examples in time-fractional coupled Burgers equations. The error norms and figures show the effectiveness and reasonable accuracy of the proposed methods.


Author(s):  
Valentin Fogang

This paper presents an approach to the Euler-Bernoulli beam theory (EBBT) using the finite difference method (FDM). The EBBT covers the case of small deflections, and shear deformations are not considered. The FDM is an approximate method for solving problems described with differential equations. The FDM does not involve solving differential equations; equations are formulated with values at selected points of the structure. Generally, the finite difference approximations are derived based on fourth-order polynomial hypothesis (FOPH) and second-order polynomial hypothesis (SOPH) for the deflection curve; the FOPH is made for the fourth and third derivative of the deflection curve while the SOPH is made for its second and first derivative. In addition, the boundary conditions and not the governing equations are applied at the beam’s ends. In this paper, the FOPH was made for all of the derivatives of the deflection curve, and additional points were introduced at the beam’s ends and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, etc.). The introduction of additional points allowed us to apply the governing equations at the beam’s ends and to satisfy the boundary and continuity conditions. Moreover, grid points with variable spacing were also considered, the grid being uniform within beam segments. First-order analysis, second-order analysis, and vibration analysis of structures were conducted with this model. Furthermore, tapered beams were analyzed (element stiffness matrix, second-order analysis). Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, with damping taken into account. The results obtained in this paper showed good agreement with those of other studies, and the accuracy was increased through a grid refinement. Especially in the first-order analysis of uniform beams, the results were exact for uniformly distributed and concentrated loads regardless of the grid. Further research will be needed to investigate polynomial refinements (higher-order polynomials such as fifth-order, sixth-order…) of the deflection curve; the polynomial refinements aimed to increase the accuracy, whereby non-centered finite difference approximations at beam’s ends and positions of discontinuity would be used.


2021 ◽  
pp. 875608792110250
Author(s):  
Zaheer Abbas ◽  
Sabeeh Khaliq

This theoretical analysis reports on the non-isothermal calendering process of micropolar-Casson fluid and studies the viscoplastic and microrotation effects by utilizing the lubrication approximation (LAT). Exact dimensionless velocity and pressure gradient solutions are achieved. Then a numerical integration technique determined other mechanical quantities. Implementing the finite difference approximations resolved the energy expression. Graphs show how material parameters influence the pressure, pressure gradient, leave-off distance, temperature distribution, force, and power function. Temperature distribution increases with increased coupling number N and decreased Casson parameter [Formula: see text]. Force and power function increase with increased coupling number and decreased Casson parameter. Both Casson and coupling number control the pressure distribution and exiting sheet thickness.


Author(s):  
Luca Vincenzo Ballestra

AbstractWe show that the performances of the finite difference method for double barrier option pricing can be strongly enhanced by applying both a repeated Richardson extrapolation technique and a mesh optimization procedure. In particular, first we construct a space mesh that is uniform and aligned with the discontinuity points of the solution being sought. This is accomplished by means of a suitable transformation of coordinates, which involves some parameters that are implicitly defined and whose existence and uniqueness is theoretically established. Then, a finite difference scheme employing repeated Richardson extrapolation in both space and time is developed. The overall approach exhibits high efficacy: barrier option prices can be computed with accuracy close to the machine precision in less than one second. The numerical simulations also reveal that the improvement over existing methods is due to the combination of the mesh optimization and the repeated Richardson extrapolation.


2021 ◽  
Author(s):  
Francesco De Vanna ◽  
Alberto Benato ◽  
Francesco Picano ◽  
Ernesto Benini

AbstractThe work presents a general strategy to design high-order conservative co-located finite-difference approximations of viscous/diffusion terms for flows featuring extreme variations of diffusive properties. The proposed scheme becomes equivalent to central finite-difference derivatives with corresponding order in the case of uniform flow properties, while in variable viscosity/diffusion conditions it grants a strong preservation and a proper telescoping of viscous/diffusion terms. Presented tests show that standard co-located discretisation of the viscous terms is not able to describe the flow when the viscosity field experiences substantial variations, while the proposed method always reproduces the correct behaviour. Thus, the process is recommended for such flows whose viscosity field highly varies, in both laminar and turbulent conditions, relying on a more robust approximation of diffuse terms in any situation. Hence, the proposed discretisation should be used in all these cases and, for example, in large eddy simulations of turbulent wall flows where the eddy viscosity abruptly changes in the near-wall region.


Author(s):  
Danang Adi Pratama ◽  
Maharani Abu Bakar ◽  
Mustafa Man ◽  
M. Mashuri

Conventionally, partial differential equations (PDE) problems are solved numerically through discretization process by using finite difference approximations. The algebraic systems generated by this process are then finalized by using an iterative method. Recently, scientists invented a short cut approach, without discretization process, to solve the PDE problems, namely by using machine learning (ML). This is potential to make scientific machine learning as a new sub-field of research. Thus, given the interest in developing ML for solving PDEs, it makes an abundance of an easy-to-use methods that allows researchers to quickly set up and solve problems. In this review paper, we discussed at least three methods for solving high dimensional of PDEs, namely PyDEns, NeuroDiffEq, and Nangs, which are all based on artificial neural networks (ANNs). ANN is one of the methods under ML which proven to be a universal estimator function. Comparison of numerical results presented in solving the classical PDEs such as heat, wave, and Poisson equations, to look at the accuracy and efficiency of the methods. The results showed that the NeuroDiffEq and Nangs algorithms performed better to solve higher dimensional of PDEs than the PyDEns.


Sign in / Sign up

Export Citation Format

Share Document