scholarly journals Mathematical knowledge for teaching: Adding to the description through a study of probability in practice

Pythagoras ◽  
2006 ◽  
Vol 0 (63) ◽  
Author(s):  
Mercy Kazima ◽  
Jill Adler

In their description of the mathematical work of teaching, Ball,  Bass & Hill (2004) describe the mathematical problem solving that teachers do as they go about their work. In this paper we add to this description through our study of teaching of probability in a grade 8 multilingual classroom in South Africa. We use instances of teaching to highlight the mathematical problem solving that teachers might face as they work with learners’ ideas, both expected and unexpected. We discuss  the restructuring of tasks as an inevitable feature of teachers’ work, and argue that in addition to scaling up or scaling down of the task as Ball et al. (2004) describe, restructuring can also entail shifting the mathematical outcomes from those intended. We also point out how well known issues in mathematics education, for example working with learners’ everyday knowledge, and the languages they bring to class, are highlighted by the context of probability, enabling additional insights into the mathematical work of teaching.

Author(s):  
Olive Chapman

In recent years, considerable attention has been given to the knowledge teachers ought to hold for teaching mathematics. Teachers need to hold knowledge of mathematical problem solving for themselves as problem solvers and to help students to become better problem solvers. Thus, a teacher’s knowledge of and for teaching problem solving must be broader than general ability in problem solving. In this article a category-based perspective is used to discuss the types of knowledge that should be included in mathematical problem-solving knowledge for teaching. In particular, what do teachers need to know to teach for problem-solving proficiency? This question is addressed based on a review of the research literature on problem solving in mathematics education. The article discusses the perspective of problem-solving proficiency that framed the review and the findings regarding six categories of knowledge that teachers ought to hold to support students’ development of problem-solving proficiency. It concludes that mathematics problem-solving knowledge for teaching is a complex network of interdependent knowledge. Understanding this interdependence is important to help teachers to hold mathematical problem-solving knowledge for teaching so that it is usable in a meaningful and effective way in supporting problem-solving proficiency in their teaching. The perspective of mathematical problem-solving knowledge for teaching presented in this article can be built on to provide a framework of key knowledge mathematics teachers ought to hold to inform practice-based investigation of it and the design and investigation of learning experiences to help teachers to understand and develop the mathematics knowledge they need to teach for problem-solving proficiency.


2003 ◽  
Vol 96 (3) ◽  
pp. 185-187 ◽  
Author(s):  
Kenneth M. Williams

Problem solving is generally recognized as one of the most important components of mathematics. In Principles and Standards for School Mathematics, the National Council of Teachers of Mathematics emphasized that instructional programs should enable all students in all grades to “build new mathematical knowledge through problem solving, solve problems that arise in mathematics and in other contexts, apply and adapt a variety of appropriate strategies to solve problems, and monitor and reflect on the process of mathematical problem solving” (NCTM 2000, p. 52). But how do students become competent and confident mathematical problem solvers?


Author(s):  
Ana Kuzle

Problem solving is not only an instructional goal, but also an instructional method. As an instructional method it can be used to build new mathematical knowledge, to solve problems that arise in mathematics and in other contexts, to apply and adapt a variety of problem-solving strategies, and to monitor and reflect on the mathematical problem-solving processes. However, depicting complexity of thinking and learning processes in such environments offers challenges to researchers. A possible solution may be through multiple perspective. On one exemplary problem this instructional method will be demonstrated in a technological context including then behaviors, dispositions and knowledge observed as a result of problem solving investigations in a technological context. These are discussed from three different perspectives – students’, lecturer’s and researcher’s offering a rich portrait of a problem solving mathematical activity in a technological context. Implications for mathematics instruction at the secondary and tertiary level will be given at the end of report.


2015 ◽  
Vol 3 (2) ◽  
pp. 116-129 ◽  
Author(s):  
Gwyneth Hughes ◽  
Jonathan Brendefur ◽  
Michele Carney

As the focus of mathematics education moves from memorization toward reasoning and problem solving, professional development for in-service teachers must model these activities while simultaneously increasing participants' mathematical knowledge. We examine a representative task from a mathematics professional development course that uses rational number operation as an opportunity for problem solving and modeling. Transcripts exemplify the growth teachers make in deeply understanding the content–division of fractions–while engaging in guided reinvention and classroom discourse. We propose 4 interconnected qualities of this task that allow participants to engage in and reflect on the process of guided reinvention: (1) authentic context with multiple solution methods, including visual; (2) cognitive dissonance; (3) deep engagement; and (4) impact on mathematical knowledge for teaching.


Sign in / Sign up

Export Citation Format

Share Document