A finite element study on effect of cement type and preparation angle on mandibular molar crown restorations' stresses

2018 ◽  
Vol 10 (3) ◽  
pp. 143
Author(s):  
RamiM Galal ◽  
SalahA Yossef ◽  
MawaddaAdel Alsairafi ◽  
TariqMuhammad Alkhashem
2014 ◽  
Vol 112 (4) ◽  
pp. 925-931 ◽  
Author(s):  
Jennifer S. Wayne ◽  
Ruchi Chande ◽  
H. Christian Porter ◽  
Charles Janus

Author(s):  
Amel Boukhlif ◽  
Ali Merdji ◽  
Sandipan Roy ◽  
Hashem Alkhaldi ◽  
Ibrahim Abu-Alshaikh ◽  
...  

The aim of this finite element study was to analyze effect of supporting implants inclination on stress distribution in the bone for a four-unit fixed partial denture. A three-dimensional finite element model of mandibular molar section of the bone to receive implants was constructed. Three implant-supported fixed partial dentures, with null, moderate and wide tilting, of 0°, 15° and 30° implant inclinations, respectively, were modeled. A mechanical load of 10 MPa was applied in coronal–apical direction on bridge framework at the regions of crowns positions. The finite element analysis was performed, and von Mises stress levels were calculated. Peak stress concentration in the cortical bone was observed mostly around the implant necks, in inter-implants line. There was favorable stress distribution during loading, with peak stress being 90.04 MPa for 0°, which decreased to 54.33 MPa for 15° and 46.36 MPa for 30° inclination. The supporting implants inclination in fixed partial denture plays an important role in stress distribution and may be helpful in preventing bone loss and implant failure. This phenomenon is likely to be more pronounced in bones of poor quality. Within the limitation of this study, it seems that the inclination of implants in fixed partial denture has a favorable effect on stress distribution pattern values around the supporting implants.


Author(s):  
Ali Merdji ◽  
Belaid Taharou ◽  
Rajshree Hillstrom ◽  
Ali Benaissa ◽  
Sandipan Roy ◽  
...  

2020 ◽  
Vol 10 (14) ◽  
pp. 4737
Author(s):  
Chao Xu ◽  
Suli Pan

The coefficient of consolidation is traditionally considered as a constant value in soil consolidation calculations. This paper uses compression and recompression indexes to calculate the solution-dependent nonlinear compressibility, thus overconsolidation and normal consolidation are separated during the calculations. Moreover, the complex nonlinear consolidation can be described using the nonlinear compressibility and a nonlinear permeability. Then, the finite element discrete equation with consideration of the time-dependent load is derived, and a corresponding program is developed. Subsequently, a case history is conducted for verifying the proposed method and the program. The results show that the method is sufficiently accurate, indicating the necessity of considering nonlinearity for consolidation calculations. Finally, three cases are compared to reveal the importance of separating the overconsolidation and normal consolidation. Overall, this study concluded that it is inadequate to consider just one consolidation status in calculations, and that the proposed method is more reasonable for guiding construction.


Sign in / Sign up

Export Citation Format

Share Document