On the choice of the stochastic comparison method for multidimensional Markov chains analysis

Author(s):  
Hind Castel-Taleb ◽  
Nihal Pekergin
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Mohamed Boualem ◽  
Natalia Djellab ◽  
Djamil Aïssani

This paper focuses on stochastic comparison of the Markov chains to derive some qualitative approximations for anM/G/1retrial queue with a Bernoulli feedback. The main objective is to use stochastic ordering techniques to establish various monotonicity results with respect to arrival rates, service time distributions, and retrial parameters.


2000 ◽  
Vol 37 (03) ◽  
pp. 795-806 ◽  
Author(s):  
Laurent Truffet

We propose in this paper two methods to compute Markovian bounds for monotone functions of a discrete time homogeneous Markov chain evolving in a totally ordered state space. The main interest of such methods is to propose algorithms to simplify analysis of transient characteristics such as the output process of a queue, or sojourn time in a subset of states. Construction of bounds are based on two kinds of results: well-known results on stochastic comparison between Markov chains with the same state space; and the fact that in some cases a function of Markov chain is again a homogeneous Markov chain but with smaller state space. Indeed, computation of bounds uses knowledge on the whole initial model. However, only part of this data is necessary at each step of the algorithms.


1997 ◽  
Vol 29 (3) ◽  
pp. 830-855 ◽  
Author(s):  
Laurent Truffet

An aggregation technique of ‘near complete decomposable' Markovian systems has been proposed by Courtois [3]. It is an approximate method in many cases, except for some queuing networks, so the error between the exact and the approximate solution is an important problem. We know that the error is O(ε), where ε is defined as the maximum coupling between aggregates. Some authors developed techniques to obtain a O(ε k) error with k > 1 error with k > 1, while others developed a technique called ‘bounded aggregation’. All these techniques use linear algebra tools and do not utilize the fact that the steady-state probability vector represents the distribution of a random variable. In this work we propose a stochastic approach and we give a method to obtain stochastic bounds on all possible Markovian approximations of the two main dynamics: short-term and long-term dynamics.


1994 ◽  
Vol 26 (4) ◽  
pp. 988-1005 ◽  
Author(s):  
Bernard Van Cutsem ◽  
Bernard Ycart

This paper studies the absorption time of an integer-valued Markov chain with a lower-triangular transition matrix. The main results concern the asymptotic behavior of the absorption time when the starting point tends to infinity (asymptotics of moments and central limit theorem). They are obtained using stochastic comparison for Markov chains and the classical theorems of renewal theory. Applications to the description of large random chains of partitions and large random ordered partitions are given.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 356
Author(s):  
Nastaran Marzban Vaselabadi ◽  
Saeid Tahmasebi ◽  
Mohammad Reza Kazemi ◽  
Francesco Buono

In 2015, Lad, Sanfilippo and Agrò proposed an alternative measure of uncertainty dual to the entropy known as extropy. This paper provides some results on a dispersion measure of extropy of random variables which is called varextropy and studies several properties of this concept. Especially, the varextropy measure of residual and past lifetimes, order statistics, record values and proportional hazard rate models are discussed. Moreover, the conditional varextropy is considered and some properties of this measure are studied. Finally, a new stochastic comparison method, named varextropy ordering, is introduced and some of its properties are presented.


2000 ◽  
Vol 37 (3) ◽  
pp. 795-806 ◽  
Author(s):  
Laurent Truffet

We propose in this paper two methods to compute Markovian bounds for monotone functions of a discrete time homogeneous Markov chain evolving in a totally ordered state space. The main interest of such methods is to propose algorithms to simplify analysis of transient characteristics such as the output process of a queue, or sojourn time in a subset of states. Construction of bounds are based on two kinds of results: well-known results on stochastic comparison between Markov chains with the same state space; and the fact that in some cases a function of Markov chain is again a homogeneous Markov chain but with smaller state space. Indeed, computation of bounds uses knowledge on the whole initial model. However, only part of this data is necessary at each step of the algorithms.


1997 ◽  
Vol 29 (03) ◽  
pp. 830-855 ◽  
Author(s):  
Laurent Truffet

An aggregation technique of ‘near complete decomposable' Markovian systems has been proposed by Courtois [3]. It is an approximate method in many cases, except for some queuing networks, so the error between the exact and the approximate solution is an important problem. We know that the error is O(ε), where ε is defined as the maximum coupling between aggregates. Some authors developed techniques to obtain a O(ε k ) error with k > 1 error with k > 1, while others developed a technique called ‘bounded aggregation’. All these techniques use linear algebra tools and do not utilize the fact that the steady-state probability vector represents the distribution of a random variable. In this work we propose a stochastic approach and we give a method to obtain stochastic bounds on all possible Markovian approximations of the two main dynamics: short-term and long-term dynamics.


1994 ◽  
Vol 26 (04) ◽  
pp. 988-1005 ◽  
Author(s):  
Bernard Van Cutsem ◽  
Bernard Ycart

This paper studies the absorption time of an integer-valued Markov chain with a lower-triangular transition matrix. The main results concern the asymptotic behavior of the absorption time when the starting point tends to infinity (asymptotics of moments and central limit theorem). They are obtained using stochastic comparison for Markov chains and the classical theorems of renewal theory. Applications to the description of large random chains of partitions and large random ordered partitions are given.


Sign in / Sign up

Export Citation Format

Share Document