scholarly journals EXPONENTIAL PROBABILITY INEQUALITY FOR LINEARLY NEGATIVE QUADRANT DEPENDENT RANDOM VARIABLES

2007 ◽  
Vol 22 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Mi-Hwa Ko ◽  
Yong-Kab Choi ◽  
Yue-Soon Choi
2021 ◽  
Vol 21 (2) ◽  
pp. 437-448
Author(s):  
NADJIA AZZEDINE ◽  
AMINA ZEBLAH ◽  
SAMIR BENAISSA

The exponential probability inequalities have been important tools in probability and statistics. In this paper, we prove a new tail probability inequality for the distri-butions of sums of conditionally linearly negative quadrant dependent (F-LNQD , in short) random variables, and obtain a result dealing with conditionally complete con-vergence of first-order autoregressive processes with identically distributed (F-LNQD) innovations.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


Sign in / Sign up

Export Citation Format

Share Document