scholarly journals SOME INTEGRAL REPRESENTATIONS AND TRANSFORMS FOR EXTENDED GENERALIZED APPELL'S AND LAURICELLA'S HYPERGEOMETRIC FUNCTIONS

2017 ◽  
Vol 32 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Yongsup Kim
1992 ◽  
Vol 15 (4) ◽  
pp. 653-657 ◽  
Author(s):  
Vu Kim Tuan ◽  
R. G. Buschman

The generalized hypergeometric function was introduced by Srivastava and Daoust. In the present paper a new integral representation is derived. Similarly new integral representations of Lauricella and Appell function are obtained.


1992 ◽  
Vol 44 (6) ◽  
pp. 1317-1338 ◽  
Author(s):  
Zhimin Yan

AbstractWe study a class of generalized hypergeometric functions in several variables introduced by A. Korânyi. It is shown that the generalized Gaussian hypergeometric function is the unique solution of a system partial differential equations. Analogues of some classical results such as Kummer relations and Euler integral representations are established. Asymptotic behavior of generalized hypergeometric functions is obtained which includes some known estimates.


Author(s):  
Anatoly Kilbas ◽  
Anna Koroleva ◽  
Sergei Rogosin

AbstractThis paper surveys one of the last contributions by the late Professor Anatoly Kilbas (1948–2010) and research made under his advisorship. We briefly describe the historical development of the theory of the discussed multi-parametric Mittag-Leffler functions as a class of the Wright generalized hypergeometric functions. The method of the Mellin-Barnes integral representations allows us to extend the considered functions to the case of arbitrary values of parameters. Thus, the extended Mittag-Leffler-type functions appear. The properties of these special functions and their relations to the fractional calculus are considered. Our results are based mainly on the properties of the Fox H-functions, as one of the widest class of special functions.


Author(s):  
Maged G. Bin-Saad ◽  
Jihad A. Younis

The main objective of this paper is to present integral representations of Euler type and Laplace type for five new hypergeometric series of four variables.


Author(s):  
M.A. Pathan ◽  
Hemant Kumar

In this paper, we introduce a logarithmic Mittag-Leffler function and discuss some of its properties. The application of these properties become helpful in extension of Pochhammer’s type contour integral representations and Rodrigues formulae of some known hypergeometric functions. On application point of view, some relations are discussed which are useful in interpreting the phenomenon of spread of infectious diseases in terms of Lauricella’s multiple hypergeometric functions. 


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 483 ◽  
Author(s):  
Mehmet Ali Özarslan ◽  
Ceren Ustaoğlu

Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete beta function B y ( x , z ) . With the help of these incomplete Pochhammer ratios, we introduce new incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties of them such as integral representations, derivative formulas, transformation formulas, and recurrence relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss hypergeometric functions.


Sign in / Sign up

Export Citation Format

Share Document