A Local Ergodic Theorem on Lp

1974 ◽  
Vol 26 (5) ◽  
pp. 1206-1216 ◽  
Author(s):  
J. R. Baxter ◽  
R. V. Chacon

Two general types of pointwise ergodic theorems have been studied: those as t approaches infinity, and those as t approaches zero. This paper deals with the latter case, which is referred to as the local case.Let (X, , μ) be a complete, σ-finite measure space. Let {Tt} be a strongly continuous one-parameter semi-group of contractions on , defined for t ≧ 0. For Tt positive, it was shown independently in [2] and [5] that1.1almost everywhere on X, for any f ∊ L1. The same result was obtained in [1], with the continuity assumption weakened to having it hold for t > 0.

1979 ◽  
Vol 31 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Humphrey Fong

1. Introduction. Let (X, , m) be a σ-finite measure space and let T be a positive linear operator on L1 = L1(X, , m). T is called Markovian if(1.1)T is called sub-Markovian if(1.2)All sets and functions are assumed measurable; all relations and statements are assumed to hold modulo sets of measure zero.For a sequence of L1+ functions (ƒ0, ƒ1, ƒ2, …), let(ƒn) is called a super additive sequence or process, and (sn) a super additive sum relative to a positive linear operator T on L1 if(1.3)and(1.4)


1980 ◽  
Vol 32 (4) ◽  
pp. 880-884
Author(s):  
James H. Olsen

Let (X, F,) be a sigma-finite measure space. In what follows we assume p fixed, 1 < p < ∞ . Let T be a contraction of Lp(X, F, μ) (‖T‖,p ≦ 1). If ƒ ≧ 0 implies Tƒ ≧ 0 we will say that T is positive. In this paper we prove that if is a uniform sequence (see Section 2 for definition) and T is a positive contraction of Lp, thenexists and is finite almost everywhere for every ƒ ∊ Lp(X, F, μ).


1980 ◽  
Vol 23 (1) ◽  
pp. 115-116 ◽  
Author(s):  
James H. Olsen

Let (X, I, μ) be a σ-finite measure space and let T take Lp to Lp, p fixed, 1<p<∞,‖t‖p≤1. We shall say that the individual ergodic theorem holds for T if for any uniform sequence K1, k2,… (for the definition, see [2]) and for any f∊LP(X), the limitexists and is finite almost everywhere.


1977 ◽  
Vol 24 (2) ◽  
pp. 129-138 ◽  
Author(s):  
R. J. Fleming ◽  
J. E. Jamison

AbstractLet Lp(Ω, K) denote the Banach space of weakly measurable functions F defined on a finite measure space and taking values in a separable Hilbert space K for which ∥ F ∥p = ( ∫ | F(ω) |p)1/p < + ∞. The bounded Hermitian operators on Lp(Ω, K) (in the sense of Lumer) are shown to be of the form , where B(ω) is a uniformly bounded Hermitian operator valued function on K. This extends the result known for classical Lp spaces. Further, this characterization is utilized to obtain a new proof of Cambern's theorem describing the surjective isometries of Lp(Ω, K). In addition, it is shown that every adjoint abelian operator on Lp(Ω, K) is scalar.


1990 ◽  
Vol 10 (1) ◽  
pp. 141-149
Author(s):  
F. J. Martín-Reyes ◽  
A. De La Torre

AbstractLet (X, ν) be a finite measure space and let T: X → X be a measurable transformation. In this paper we prove that the averages converge a.e. for every f in Lp(dν), 1 < p < ∞, if and only if there exists a measure γ equivalent to ν such that the averages apply uniformly Lp(dν) into weak-Lp(dγ). As a corollary, we get that uniform boundedness of the averages in Lp(dν) implies a.e. convergence of the averages (a result recently obtained by Assani). In order to do this, we first study measures v equivalent to a finite invariant measure μ, and we prove that supn≥0An(dν/dμ)−1/(p−1) a.e. is a necessary and sufficient condition for the averages to converge a.e. for every f in Lp(dν).


Author(s):  
John H. Halton

Given a totally finite measure space (S, S, μ) and two μ-integrable, non-negative functions f(x) and φ(x) defined in S, such that whenthenwe define correlated sampling as the technique of estimatingby sampling an estimator functionwhere ξ is uniformly distributed in S with respect to μ (i.e. for any T ∈ S, p(T) = μ(T)/μ(S) is the probability that ξ lies in T): and importance sampling as estimating L by sampling the estimator functionwhere η is distributed in S with probability density φ(x)/ΦThen, clearly,It follows that υ(ξ) and ν(η) are both unbiased estimators of L, and that their variances can both be made to approach zero arbitrarily closely by making φ(x) a sufficiently close approximation to f(x).


2015 ◽  
Vol 3 ◽  
Author(s):  
TERENCE TAO

Let $F_{2}$ denote the free group on two generators $a$ and $b$. For any measure-preserving system $(X,{\mathcal{X}},{\it\mu},(T_{g})_{g\in F_{2}})$ on a finite measure space $X=(X,{\mathcal{X}},{\it\mu})$, any $f\in L^{1}(X)$, and any $n\geqslant 1$, define the averaging operators $$\begin{eqnarray}\displaystyle {\mathcal{A}}_{n}f(x):=\frac{1}{4\times 3^{n-1}}\mathop{\sum }_{g\in F_{2}:|g|=n}f(T_{g}^{-1}x), & & \displaystyle \nonumber\end{eqnarray}$$ where $|g|$ denotes the word length of $g$. We give an example of a measure-preserving system $X$ and an $f\in L^{1}(X)$ such that the sequence ${\mathcal{A}}_{n}f(x)$ is unbounded in $n$ for almost every $x$, thus showing that the pointwise and maximal ergodic theorems do not hold in $L^{1}$ for actions of $F_{2}$. This is despite the results of Nevo–Stein and Bufetov, who establish pointwise and maximal ergodic theorems in $L^{p}$ for $p>1$ and for $L\log L$ respectively, as well as an estimate of Naor and the author establishing a weak-type $(1,1)$ maximal inequality for the action on $\ell ^{1}(F_{2})$. Our construction is a variant of a counterexample of Ornstein concerning iterates of a Markov operator.


2013 ◽  
Vol 11 (7) ◽  
Author(s):  
Piotr Niemiec

AbstractFor a metrizable space X and a finite measure space (Ω, $\mathfrak{M}$, µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of $\mathfrak{M}$-measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.


1982 ◽  
Vol 25 (4) ◽  
pp. 468-471
Author(s):  
James H. Olsen

AbstractLet (X, , μ) be a σ-finite measure space, p fixed, 1 < p < ∞, T a linear operator of Lp(X,μ), {αi} a sequence of complex numbers. Ifexists and is finite a.e. we say the individual weighted ergodic theorem holds for T with the weights {αi}In this paper we show that if {αi} is a bounded Besicovitch sequence and T is a Dunford-Schwartz operator (i.e.: ||T||1≤1, ||T||∞≤1) then the individual weighted ergodic theorem holds for T with the weights {αi}.


1973 ◽  
Vol 16 (2) ◽  
pp. 161-163
Author(s):  
A. N. Al-Hussaini

In the following (Ω, α, μ) is a totally σ-finite measure space except where noted. For a sub-σ-algebra β ⊂ α, the conditional expectation E{f|β} off given β is a function measurable relative to β, such thatIn [5] R.G.Douglas proved, among other things the following, in the finite case:Suppose μ(Ω)=l. Then a linear operator T on L1(Ω, α,μ) is a conditional expect ion if and only if1.11.21.3The point of this note is to characterize conditional expectation in the σ-finite case (Theorems 2, 3).


Sign in / Sign up

Export Citation Format

Share Document