Sullivan's Minimal Models and Higher Order Whitehead Products

1978 ◽  
Vol 30 (5) ◽  
pp. 961-982 ◽  
Author(s):  
Peter Andrews ◽  
Martin Arkowitz

The theory of minimal models, as developed by Sullivan [6; 8; 16] gives a method of computing the rational homotopy groups of a space X (that is, the homotopy groups of X tensored with the additive group of rationals Q). One associates to X a free, differential, graded-commutative lgebra , over Q, called the minimal model of X, from which one can read off the rational homotopy groups of X.

1979 ◽  
Vol 53 (2) ◽  
pp. 117-133 ◽  
Author(s):  
John B. Friedlander ◽  
Stephen Halperin

Author(s):  
Tore Butlin ◽  
Jim Woodhouse

Highly idealised models of friction-induced vibration have been motivated by an attempt to capture what is essential to the phenomenon. This approach has resulted in a few simple mechanisms that are thought to capture common routes to instability. This paper aims to determine how well these perform as approximations to a more complex system, and whether the essential ingredients needed for a minimal model can be identified. We take a reduced-order model that exemplifies ‘mode-coupling’ and explore the extent to which it can approximate predictions based on an experimentally identified test-system. For the particular test system under study, two-mode ‘mode-coupling’ is rarely a good approximation and three modes are usually required to model a limited frequency range. We then compare predictions with results from an extensive program of sliding contact tests on a pin-on-disc rig in order to identify which ingredients are needed to explain observed squeal events. The results suggest that several minimal models would be needed to describe all observed squeal initiations, but the ‘negative-damping’ route to instability, which requires a velocity-dependent friction law, convincingly accounts for one cluster.


2008 ◽  
Vol 15 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Greg Arone ◽  
Pascal Lambrechts ◽  
Victor Turchin ◽  
Ismar Volić

1982 ◽  
Vol 34 (1) ◽  
pp. 31-43 ◽  
Author(s):  
Stephen Halperin ◽  
Jean Claude Thomas

Let be two Serre fibrations with same base and fibre in which all the spaces have the homotopy type of simple CW complexes of finite type. We say they are rationally homotopically equivalent if there is a homotopy equivalence between the localizations at Q which covers the identity map of BQ.Such an equivalence implies, of course, an isomorphism of cohomology algebras (over Q) and of rational homotopy groups; on the other hand isomorphisms of these classical algebraic invariants are usually (by far) insufficient to establish the existence of a rational homotopy equivalence.Nonetheless, as we shall show in this note, for certain fibrations rational homotopy equivalence is in fact implied by the existence of an isomorphism of cohomology algebras. While these fibrations are rare inside the class of all fibrations, they do include principal bundles with structure groups a connected Lie group G as well as many associated bundles with fibre G/K.


2019 ◽  
Vol 2019 (747) ◽  
pp. 147-174 ◽  
Author(s):  
Karol Palka

Abstract Let {E\subseteq\mathbb{P}^{2}} be a complex rational cuspidal curve and let {(X,D)\to(\mathbb{P}^{2},E)} be the minimal log resolution of singularities. We prove that E has at most six cusps and we establish an effective version of the Zaidenberg finiteness conjecture (1994) concerning Eisenbud–Neumann diagrams of E. This is done by analyzing the Minimal Model Program run for the pair {(X,\frac{1}{2}D)} . Namely, we show that {\mathbb{P}^{2}\setminus E} is {\mathbb{C}^{**}} -fibred or for the log resolution of the minimal model the Picard rank, the number of boundary components and their self-intersections are bounded.


1964 ◽  
Vol 60 (3) ◽  
pp. 409-420 ◽  
Author(s):  
C. R. F. Maunder

In this paper, we shall prove a result which identifies the differentials in the Adams spectral sequence (see (1,2)) with certain cohomology operations of higher kinds, in the sense of (4). This theorem will be stated precisely at the end of section 2, after a summary of the necessary information about the Adams spectral sequence and higher-order cohomology operations; the proof will follow in section 3. Finally, in section 4, we shall consider, by way of example, the Adams spectral sequence for the stable homotopy groups of spheres: we show how our theorem gives a proof of Liulevicius's result that , where the elements hn (n ≥ 0) are base elements ofcorresponding to the elements Sq2n in A, the mod 2 Steenrod algebra.


2014 ◽  
Vol 215 ◽  
pp. 203-224 ◽  
Author(s):  
Caucher Birkar ◽  
Zhengyu Hu

AbstractWe continue our study of the relation between log minimal models and various types of Zariski decompositions. Let (X,B) be a projective log canonical pair. We will show that (X,B) has a log minimal model if either KX + B birationally has a Nakayama–Zariski decomposition with nef positive part, or if KX +B is big and birationally has a Fujita–Zariski or Cutkosky–Kawamata–Moriwaki–Zariski decomposition. Along the way we introduce polarized pairs (X,B +P), where (X,B) is a usual projective pair and where P is nef, and we study the birational geometry of such pairs.


2002 ◽  
Vol 335 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Stefan Papadima ◽  
Alexander I. Suciu

2021 ◽  
Vol 272 (1333) ◽  
Author(s):  
Gijs Heuts

We construct a Goodwillie tower of categories which interpolates between the category of pointed spaces and the category of spectra. This tower of categories refines the Goodwillie tower of the identity functor in a precise sense. More generally, we construct such a tower for a large class of ∞ \infty -categories C \mathcal {C} and classify such Goodwillie towers in terms of the derivatives of the identity functor of C \mathcal {C} . As a particular application we show how this provides a model for the homotopy theory of simply-connected spaces in terms of coalgebras in spectra with Tate diagonals. Our classification of Goodwillie towers simplifies considerably in settings where the Tate cohomology of the symmetric groups vanishes. As an example we apply our methods to rational homotopy theory. Another application identifies the homotopy theory of p p -local spaces with homotopy groups in a certain finite range with the homotopy theory of certain algebras over Ching’s spectral version of the Lie operad. This is a close analogue of Quillen’s results on rational homotopy.


Sign in / Sign up

Export Citation Format

Share Document