Essentially Convexoid Operators

1981 ◽  
Vol 33 (2) ◽  
pp. 257-274
Author(s):  
Takayuki Furuta

Let H be a separable complex Hilbert space and let B(H) denote the algebra of all bounded linear operators on H. Let π be the quotient mapping from B(H) onto the Calkin algebra B(H)/K(H), where K(H) denotes all compact operators on B(H). An operator T ∈ B(H) is said to be convexoid[14] if the closure of its numerical range W(T) coincides with the convex hull co σ(T) of its spectrum σ(T). T ∈ B(H) is said to be essentially normal, essentially G1, or essentially convexoid if π(T) is normal, G1 or convexoid in B(H)/K(H) respectively.

1974 ◽  
Vol 26 (1) ◽  
pp. 115-120 ◽  
Author(s):  
Carl Pearcy ◽  
Norberto Salinas

Let be a fixed separable, infinite dimensional complex Hilbert space, and let () denote the algebra of all (bounded, linear) operators on . The ideal of all compact operators on will be denoted by and the canonical quotient map from () onto the Calkin algebra ()/ will be denoted by π.Some open problems in the theory of extensions of C*-algebras (cf. [1]) have recently motivated an increasing interest in the class of all operators in () whose self-commuta tor is compact.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
M. Barraa

Let BH be the algebra of bounded linear operators on a complex Hilbert space H. For k-tuples of elements of BH, A=A1,…,Ak and B=B1,…,Bk, let RA,B denote the elementary operator on BH defined by RA,BX=∑i=1kAiXBi. In this paper, we prove the following formula for the numerical range of RA,B: VRA,B,BBH=[∪U∈UHW(∑i=1kUAiU*Bi)-]-, where UH is the set of unitary operators.


1985 ◽  
Vol 26 (2) ◽  
pp. 141-143 ◽  
Author(s):  
Fuad Kittaneh

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).


1977 ◽  
Vol 29 (5) ◽  
pp. 1010-1030 ◽  
Author(s):  
Takayuki Furuta

In this paper we shall discuss some classes of bounded linear operators on a complex Hilbert space. If T is a bounded linear operator T acting on the complex Hilbert space H, then the following two inequalities always hold:where σ(T) indicates the spectrum of T, W(T) denotes the numerical range of T defined by W(T) = {(Tx, x) : ||x|| = 1 and x ∊ H} and means the closure of W(T) respectively.


2018 ◽  
Vol 68 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Fangfang Zhao ◽  
Changjing Li

AbstractLetB(H) be the algebra of all bounded linear operators on a complex Hilbert spaceHand 𝓐 ⊆B(H) be a von Neumann algebra with no central summands of typeI1. ForA,B∈ 𝓐, define byA∙B=AB+BA∗a new product ofAandB. In this article, it is proved that a map Φ: 𝓐 →B(H) satisfies Φ(A∙B∙C) = Φ(A) ∙B∙C+A∙ Φ(B) ∙C+A∙B∙Φ(C) for allA,B,C∈ 𝓐 if and only if Φ is an additive *-derivation.


2015 ◽  
Vol 17 (05) ◽  
pp. 1450042
Author(s):  
Weijuan Shi ◽  
Xiaohong Cao

Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. T ∈ B(H) satisfies Weyl's theorem if σ(T)\σw(T) = π00(T), where σ(T) and σw(T) denote the spectrum and the Weyl spectrum of T, respectively, π00(T) = {λ ∈ iso σ(T) : 0 < dim N(T - λI) < ∞}. T ∈ B(H) is said to have the stability of Weyl's theorem if T + K satisfies Weyl's theorem for all compact operator K ∈ B(H). In this paper, we characterize the operator T on H satisfying the stability of Weyl's theorem holds for T2.


1980 ◽  
Vol 21 (1) ◽  
pp. 75-79 ◽  
Author(s):  
G. J. Murphy ◽  
T. T. West

Let H be a Hilbert space and let B denote the Banach algebra of all bounded linear operators on H with K denoting the closed ideal of compact operators in B. If T ∈ B, σ(T) and r(T) will denote the spectrum and spectral radius of T, respectively, and π the canonical mapping of B onto the Calkin algebra B/K.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chaoqun Chen ◽  
Fangyan Lu ◽  
Cuimei Cui ◽  
Ling Wang

Let H be a complex Hilbert space. Denote by B H the algebra of all bounded linear operators on H . In this paper, we investigate the non-self-adjoint subalgebras of B H of the form T + B , where B is a block-closed bimodule over a masa and T is a subalgebra of the masa. We establish a sufficient and necessary condition such that the subalgebras of the form T + B has the double commutant property in some particular cases.


1975 ◽  
Vol 27 (1) ◽  
pp. 152-154
Author(s):  
Edward A. Azoff

Let be a Hilbert space and denote the collection of (bounded, linear) operators on by . Throughout this paper, the term ‘algebra’ will refer to a subalgebra of ; unless otherwise stated, it will not be assumed to contain I or to be closed in any topology.An algebra is said to be transitive if it has no non-trivial invariant subspaces. The following lemma has revolutionized the study of transitive algebras. For a pr∞f and a general discussion of its implications, the reader is referred to [5].


2021 ◽  
Vol 54 (1) ◽  
pp. 318-325
Author(s):  
Nadia Mesbah ◽  
Hadia Messaoudene ◽  
Asma Alharbi

Abstract Let ℋ {\mathcal{ {\mathcal H} }} be a complex Hilbert space and ℬ ( ℋ ) {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) denotes the algebra of all bounded linear operators acting on ℋ {\mathcal{ {\mathcal H} }} . In this paper, we present some new pairs of generalized finite operators. More precisely, new pairs of operators ( A , B ) ∈ ℬ ( ℋ ) × ℬ ( ℋ ) \left(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}) satisfying: ∥ A X − X B − I ∥ ≥ 1 , for all X ∈ ℬ ( ℋ ) . \parallel AX-XB-I\parallel \ge 1,\hspace{1.0em}\hspace{0.1em}\text{for all}\hspace{0.1em}\hspace{0.33em}X\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}). An example under which the class of such operators is not invariant under similarity orbit is given. Range kernel orthogonality of generalized derivation is also studied.


Sign in / Sign up

Export Citation Format

Share Document