Distinguished Domains

1982 ◽  
Vol 34 (1) ◽  
pp. 181-193 ◽  
Author(s):  
Raymond C. Heitmann ◽  
Stephen McAdam

This paper introduces a class of domains which we hope to show merits some attention.Definition. The domain R is said to be a distinguished domain if for any 0 ≠ z ∈ K, the quotient field of R, (1 : z) does not consist entirely of zero divisors modulo (1 : z–l). (Note: Here we use the fact that a zero module has no zero divisors. Thus if z–l ∈ R, so that (1 : z–l) = R, then the condition holds trivially.)Section 1 of this paper gives numerous examples of distinguished domains, foremost among them being Krull domains and Prufer domains. In fact Prüfer domains are shown to be exactly those distinguished domains whose prime lattice forms a tree. Other distinguished domains can be constructed by the D + M construction. It is shown that distinguished domains are integrally closed but the converse fails.

2005 ◽  
Vol 04 (02) ◽  
pp. 195-209 ◽  
Author(s):  
MARCO FONTANA ◽  
EVAN HOUSTON ◽  
THOMAS LUCAS

Call a domain R an sQQR-domain if each simple overring of R, i.e., each ring of the form R[u] with u in the quotient field of R, is an intersection of localizations of R. We characterize Prüfer domains as integrally closed sQQR-domains. In the presence of certain finiteness conditions, we show that the sQQR-property is very strong; for instance, a Mori sQQR-domain must be a Dedekind domain. We also show how to construct sQQR-domains which have (non-simple) overrings which are not intersections of localizations.


2003 ◽  
Vol 02 (01) ◽  
pp. 21-50 ◽  
Author(s):  
M. FONTANA ◽  
P. JARA ◽  
E. SANTOS

Starting from the notion of semistar operation, introduced in 1994 by Okabe and Matsuda [49], which generalizes the classical concept of star operation (cf. Gilmer's book [27]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer, P. Lorenzen and P. Jaffard (cf. Halter–Koch's book [32]), in this paper we outline a general approach to the theory of Prüfer ⋆-multiplication domains (or P⋆MDs), where ⋆ is a semistar operation. This approach leads to relax the classical restriction on the base domain, which is not necessarily integrally closed in the semistar case, and to determine a semistar invariant character for this important class of multiplicative domains (cf. also J. M. García, P. Jara and E. Santos [25]). We give a characterization theorem of these domains in terms of Kronecker function rings and Nagata rings associated naturally to the given semistar operation, generalizing previous results by J. Arnold and J. Brewer ]10] and B. G. Kang [39]. We prove a characterization of a P⋆MD, when ⋆ is a semistar operation, in terms of polynomials (by using the classical characterization of Prüfer domains, in terms of polynomials given by R. Gilmer and J. Hoffman [28], as a model), extending a result proved in the star case by E. Houston, S. J. Malik and J. Mott [36]. We also deal with the preservation of the P⋆MD property by ascent and descent in case of field extensions. In this context, we generalize to the P⋆MD case some classical results concerning Prüfer domains and PvMDs. In particular, we reobtain as a particular case a result due to H. Prüfer [51] and W. Krull [41] (cf. also F. Lucius [43] and F. Halter-Koch [34]). Finally, we develop several examples and applications when ⋆ is a (semi)star given explicitly (e.g. we consider the case of the standardv-, t-, b-, w-operations or the case of semistar operations associated to appropriate families of overrings).


Author(s):  
Marco Fontana ◽  
Muhammad Zafrullah

The so-called Prüferυ-multiplication domains (PυMDs) are usually defined as domains whose finitely generated nonzero ideals aret-invertible. These domains generalize Prüfer domains and Krull domains. The PυMDs are relatively obscure compared to their very well-known special cases. One of the reasons could be that the study of PυMDs uses the jargon of star operations, such as theυ-operation and thet-operation. In this paper, we provide characterizations of and basic results on PυMDs and related notions without star operations.


2016 ◽  
Vol 220 (12) ◽  
pp. 3927-3947 ◽  
Author(s):  
Olivier A. Heubo-Kwegna ◽  
Bruce Olberding ◽  
Andreas Reinhart

1999 ◽  
Vol 60 (1) ◽  
pp. 129-135
Author(s):  
Dmitri Alexeev

Let R be an integral domain with quotient field Q. We investigate quasi- and Q-projective ideals, and properties of domains all ideals of which are quasi-projective. It is shown that the so-called l½-generated ideals are quasi-projective, moreover, projective. A module M is quasi-projective if and only if, for a projective ideal P of R, the tensor product M ⊗RP is quasi-projective. Domains whose all ideals are quasi-projective are characterised as almost maximal Prüfer domains. Q is quasi-projective if and only if every proper submodule of Q is complete in its R-topology.


1978 ◽  
Vol 19 (2) ◽  
pp. 199-203 ◽  
Author(s):  
D. D. Anderson

In this paper we study several generalizations of the concept of unique factorization domain. An integral domain is called a π-domain if every principal ideal is a product of prime ideals. Theorem 1 shows that the class of π-domains forms a rather natural subclass of the class of Krull domains. In Section 3 we consider overrings of π-domains. In Section 4 generalized GCD-domains are introduced: these form an interesting class of domains containing all Prüfer domains and all π-domains.


1979 ◽  
Vol 22 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Ira J. Papick

In the study of particular categories of integral domains, it has proved useful to know which overrings of the domains of interest lie within the category, and indeed whether all such overrings do. (Recall: an overring of R is a ring T with R ⊆ T ⊆ quotient field of R.) Two classes of domains classically studied in this setting are Prüfer domains and one-dimensional Noetherian domains. Since both of these classes are contained in the category of coherent domains, it is natural to investigate this category in this setting.


Author(s):  
Gyu Whan Chang

AbstractLet D be an integrally closed domain, $$\{V_{\alpha }\}$$ { V α } be the set of t-linked valuation overrings of D, and $$v_c$$ v c be the star operation on D defined by $$I^{v_c} = \bigcap _{\alpha } IV_{\alpha }$$ I v c = ⋂ α I V α for all nonzero fractional ideals I of D. In this paper, among other things, we prove that D is a $$v_c$$ v c -Noetherian domain if and only if D is a Krull domain, if and only if $$v_c = v$$ v c = v and every prime t-ideal of D is a maximal t-ideal. As a corollary, we have that if D is one-dimensional, then $$v_c = v$$ v c = v if and only if D is a Dedekind domain.


2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


Sign in / Sign up

Export Citation Format

Share Document