prufer domains
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 13)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


Author(s):  
A. Yassine ◽  
M. J. Nikmehr ◽  
R. Nikandish

Let [Formula: see text] be a commutative ring with identity. In this paper, we introduce the concept of [Formula: see text]-absorbing prime ideals which is a generalization of prime ideals. A proper ideal [Formula: see text] of [Formula: see text] is called [Formula: see text]-absorbing prime if for all nonunit elements [Formula: see text] such that [Formula: see text], then either [Formula: see text] or [Formula: see text]. Some properties of [Formula: see text]-absorbing prime are studied. For instance, it is shown that if [Formula: see text] admits a [Formula: see text]-absorbing prime ideal that is not a prime ideal, then [Formula: see text] is a quasi–local ring. Among other things, it is proved that a proper ideal [Formula: see text] of [Formula: see text] is [Formula: see text]-absorbing prime if and only if the inclusion [Formula: see text] for some proper ideals [Formula: see text] of [Formula: see text] implies that [Formula: see text] or [Formula: see text]. Also, [Formula: see text]-absorbing prime ideals of PIDs, valuation domains, Prufer domains and idealization of a modules are characterized. Finally, an analogous to the Prime Avoidance Theorem and some applications of this theorem are given.


2020 ◽  
Vol 224 (1) ◽  
pp. 388-401
Author(s):  
Jacques Boulanger ◽  
Jean-Luc Chabert

2019 ◽  
Vol 170 (12) ◽  
pp. 102719
Author(s):  
Lorna Gregory ◽  
Sonia L'Innocente ◽  
Carlo Toffalori

Sign in / Sign up

Export Citation Format

Share Document