scholarly journals Coherent Overrings

1979 ◽  
Vol 22 (3) ◽  
pp. 331-337 ◽  
Author(s):  
Ira J. Papick

In the study of particular categories of integral domains, it has proved useful to know which overrings of the domains of interest lie within the category, and indeed whether all such overrings do. (Recall: an overring of R is a ring T with R ⊆ T ⊆ quotient field of R.) Two classes of domains classically studied in this setting are Prüfer domains and one-dimensional Noetherian domains. Since both of these classes are contained in the category of coherent domains, it is natural to investigate this category in this setting.

2005 ◽  
Vol 04 (02) ◽  
pp. 195-209 ◽  
Author(s):  
MARCO FONTANA ◽  
EVAN HOUSTON ◽  
THOMAS LUCAS

Call a domain R an sQQR-domain if each simple overring of R, i.e., each ring of the form R[u] with u in the quotient field of R, is an intersection of localizations of R. We characterize Prüfer domains as integrally closed sQQR-domains. In the presence of certain finiteness conditions, we show that the sQQR-property is very strong; for instance, a Mori sQQR-domain must be a Dedekind domain. We also show how to construct sQQR-domains which have (non-simple) overrings which are not intersections of localizations.


2020 ◽  
Vol 32 (5) ◽  
pp. 1109-1129
Author(s):  
Dario Spirito

AbstractWe study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.


1999 ◽  
Vol 60 (1) ◽  
pp. 129-135
Author(s):  
Dmitri Alexeev

Let R be an integral domain with quotient field Q. We investigate quasi- and Q-projective ideals, and properties of domains all ideals of which are quasi-projective. It is shown that the so-called l½-generated ideals are quasi-projective, moreover, projective. A module M is quasi-projective if and only if, for a projective ideal P of R, the tensor product M ⊗RP is quasi-projective. Domains whose all ideals are quasi-projective are characterised as almost maximal Prüfer domains. Q is quasi-projective if and only if every proper submodule of Q is complete in its R-topology.


1986 ◽  
Vol 38 (2) ◽  
pp. 286-303 ◽  
Author(s):  
H. H. Brungs

It is the purpose of this paper to discuss a construction of right arithmetical (or right D-domains in [5]) domains, i.e., integral domains R for which the lattice of right ideals is distributive (see also [3]). Whereas the commutative rings in this class are precisely the Prüfer domains, not even right and left principal ideal domains are necessarily arithmetical. Among other things we show that a Bezout domain is right arithmetical if and only if all maximal right ideals are two-sided.Any right ideal of a right noetherian, right arithmetical domain is two-sided. This fact makes it possible to describe the semigroup of right ideals in such a ring in a satisfactory way; [3], [5].


2019 ◽  
Vol 19 (07) ◽  
pp. 2050122 ◽  
Author(s):  
Songül Esin ◽  
Müge Kanuni ◽  
Ayten Koç ◽  
Katherine Radler ◽  
Kulumani M. Rangaswamy

Prüfer domains and subclasses of integral domains such as Dedekind domains admit characterizations by means of the properties of their ideal lattices. Interestingly, a Leavitt path algebra [Formula: see text], in spite of being noncommutative and possessing plenty of zero divisors, seems to have its ideal lattices possess the characterizing properties of these special domains. In [The multiplicative ideal theory of Leavitt path algebras, J. Algebra 487 (2017) 173–199], it was shown that the ideals of [Formula: see text] satisfy the distributive law, a property of Prüfer domains and that [Formula: see text] is a multiplication ring, a property of Dedekind domains. In this paper, we first show that [Formula: see text] satisfies two more characterizing properties of Prüfer domains which are the ideal versions of two theorems in Elementary Number Theory, namely, for positive integers [Formula: see text], [Formula: see text] and [Formula: see text]. We also show that [Formula: see text] satisfies a characterizing property of almost Dedekind domains in terms of the ideals whose radicals are prime ideals. Finally, we give necessary and sufficient conditions under which [Formula: see text] satisfies another important characterizing property of almost Dedekind domains, namely, the cancellative property of its nonzero ideals.


1978 ◽  
Vol 26 (4) ◽  
pp. 465-474 ◽  
Author(s):  
M. W. Evans

AbstractA ring R for which every finitely generated right submodule of SR, the left flat epimorphic hull of R, is projective is termed an extended semi-hereditary ring. It is shown that several of the characterizing properties of Prufer domains may be generalized to give characterizations of extended semi-hereditary rings. A suitable class of PP rings is introduced which in this case serves as a generalization of commutative integral domains.


1982 ◽  
Vol 34 (1) ◽  
pp. 181-193 ◽  
Author(s):  
Raymond C. Heitmann ◽  
Stephen McAdam

This paper introduces a class of domains which we hope to show merits some attention.Definition. The domain R is said to be a distinguished domain if for any 0 ≠ z ∈ K, the quotient field of R, (1 : z) does not consist entirely of zero divisors modulo (1 : z–l). (Note: Here we use the fact that a zero module has no zero divisors. Thus if z–l ∈ R, so that (1 : z–l) = R, then the condition holds trivially.)Section 1 of this paper gives numerous examples of distinguished domains, foremost among them being Krull domains and Prufer domains. In fact Prüfer domains are shown to be exactly those distinguished domains whose prime lattice forms a tree. Other distinguished domains can be constructed by the D + M construction. It is shown that distinguished domains are integrally closed but the converse fails.


1975 ◽  
Vol 14 (4) ◽  
pp. 303-336 ◽  
Author(s):  
Moshe Jarden

2018 ◽  
Vol 51 (381) ◽  
pp. FP1-FP6
Author(s):  
R. Strano

Prüfer domains are characterized by various properties regarding ideals and operations between them. In this note we consider six of these properties. The natural generalization of the notion of Prüfer domain to the case of a commutative ring with unit, not necessarily a domain, is the notion of arithmetic ring. We ask if the previous properties characterize arithmetic ring in the case of a general commutative ring with unit. We prove that four of such properties characterize arithmetic rings while the remaining two are weaker and give rise to two different generalizations.


Sign in / Sign up

Export Citation Format

Share Document