The Additive Characters of the Witt Ring of an Algebraic Number Field

1988 ◽  
Vol 40 (3) ◽  
pp. 546-588 ◽  
Author(s):  
P. E. Conner ◽  
Noriko Yui

For an algebraic number field K there is a similarity between the additive characters defined on the Witt ring W(K), [20], [11], [17], [14, p. 131], and the local root numbers associated to a real orthogonal representation of the absolute Galois group of K, [18], [5]. Using results of Deligne and of Serre, [16], we shall derive in (5.3) a formula expressing the value, at a prime in K, of the additive character on a Witt class in terms of the rank modulo 2, the stable Hasse-Witt invariant and the local root number associated to the real quadratic character defined by the square class of the discriminant. Thus we are able to separate out the contributions made to the value of the additive character by each of the standard Witt class invariants.

1997 ◽  
Vol 40 (4) ◽  
pp. 402-415
Author(s):  
Jenna P. Carpenter

AbstractThis paper studies how the local root numbers and the Weil additive characters of the Witt ring of a number field behave under reciprocity equivalence. Given a reciprocity equivalence between two fields, at each place we define a local square class which vanishes if and only if the local root numbers are preserved. Thus this local square class serves as a local obstruction to the preservation of local root numbers. We establish a set of necessary and sufficient conditions for a selection of local square classes (one at each place) to represent a global square class. Then, given a reciprocity equivalence that has a finite wild set, we use these conditions to show that the local square classes combine to give a global square class which serves as a global obstruction to the preservation of all root numbers. Lastly, we use these results to study the behavior of Weil characters under reciprocity equivalence.


1983 ◽  
Vol 92 ◽  
pp. 89-106 ◽  
Author(s):  
Yoshio Mimura

Let K be a totally real algebraic number field. In a positive definite quadratic space over K a lattice En is called a unit lattice of rank n if En has an orthonormal basis {e1 …, en}. The class number one problem is to find n and K for which the class number of En is one. Dzewas ([1]), Nebelung ([3]), Pfeuffer ([6], [7]) and Peters ([5]) have settled this problem.


2010 ◽  
Vol 60 (6) ◽  
Author(s):  
Juraj Kostra

AbstractLet K be a tamely ramified cyclic algebraic number field of prime degree l. In the paper one-to-one correspondence between all orders of K with a normal basis and all ideals of K with a normal basis is given.


1988 ◽  
Vol 30 (2) ◽  
pp. 231-236
Author(s):  
Shigeaki Tsuyumine

Let K be a totally real algebraic number field of degree n > 1, and let OK be the maximal order. We denote by гk, the Hilbert modular group SL2(OK) associated with K. On the extent of the weight of an automorphy factor for гK, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for K = ℚ(√5). It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.


Sign in / Sign up

Export Citation Format

Share Document